2/12/20 Lecture outline

\star Reading: Taylor sections 15.1, 15.2, 15.3, 15.10.

- Last time "boost symmetry:" frames with constant relative velocity are all physically equivalent. For low relative velocity, the relation is approximately given by the Galilean transformation $x^{\prime} \approx x-v t, t^{\prime} \approx t, y^{\prime}=y, z^{\prime}=z$. But this does not preserve the wave equation for \vec{E} and \vec{B} : it has $\left.\frac{1}{c^{2}} \frac{\partial^{2}}{\partial t^{\prime 2}}-\nabla,^{2}\right) \neq \frac{1}{c^{2}} \frac{\partial^{2}}{\partial t^{2}}-\nabla^{2}$) and would make the wrong, boost-breaking prediction that light moves at speeds $c \pm v$ in the prime frame.

The correct transformation preserves $d s^{2}=(c d t)^{2}-d \vec{x}^{2}$ (it also preserves $\frac{1}{c^{2}} \frac{\partial^{2}}{\partial t^{2}}-\nabla^{2}$). Since the two frames are related by $v \rightarrow-v$, this is the only possibility that ensures $d s^{2}=$ $0 \leftrightarrow d s^{\prime 2}=0$. Argue also that $d y^{\prime}=d y$ and $d z^{\prime}=d z$ for relative motion along the x-axis. So the transformation has $(c d t)^{2}-d x^{2}=\left(c d t^{\prime}\right)^{2}-d x^{\prime 2}$. If there were a relative $+\operatorname{sign}$, it would be a rotation matrix and the dot product would be preserved using $\sin ^{2} \theta+\cos ^{2} \theta=1$. The relative minus sign leads to a close cousin: $\binom{c d t^{\prime}}{d x^{\prime}}=\left(\begin{array}{cc}\gamma & -\beta \gamma \\ -\beta \gamma & \gamma\end{array}\right)\binom{c d t}{d x}$ where we can exhibit the analogy via $\gamma \equiv \cosh \phi, \beta \gamma \equiv \sinh \phi$ and the matrix has unit determinant because $\gamma=1 / \sqrt{1-\beta^{2}}$.

The Lorentz transformation is $\binom{c t^{\prime}}{x^{\prime}}=\left(\begin{array}{cc}\gamma & -\beta \gamma \\ -\beta \gamma & \gamma\end{array}\right)\binom{c t}{x}$ with $\beta=v / c$, and the Galilean transformation is recovered in the $\beta \ll 1$ limit.

The $\phi=\tanh ^{-1}(v / c)$ above is called the rapidity, and it has the nice property that a Lorentz transformation parameterized by ϕ_{1}, combined with another parameterized by ϕ_{2}, is equivalent to a Lorentz transformation parameterized by $\phi_{1}+\phi_{2}$. So rapidities simply add, while the addition of velocities formula is more complicated, (to be discussed in more detail soon).

The Lorentz transformation preserves the wave equation $\frac{1}{c^{2}} \frac{\partial^{2}}{\partial t^{\prime 2}}-\nabla^{\prime 2}=\frac{1}{c^{2}} \frac{\partial^{2}}{\partial t^{2}}-\nabla^{2}$, so the two observers agree that light waves travel at $v=c$ in all Lorentz-related frames.

The inverse Lorentz transformation is related by $v \rightarrow-v$; makes sense.

- A heartbeat in the ' frame has $d x^{\prime}=0$ and this in the Lorentz transformation leads to $d t=\gamma d t^{\prime}$: time dilation. This can also be illustrated by considering a light flash in the ' frame that is emitted at the origin of spacetime, goes up the y^{\prime} axis, gets reflected off a mirror at $y^{\prime}=h$, and gets recorded by a detector at $\left(c t^{\prime}, x^{\prime}, y^{\prime}, z^{\prime}\right)=\left(\Delta t^{\prime}, 0,0,0\right)$. The time between the events in the lab frame is found from the Lorentz transformation to be $\Delta t=\gamma \Delta t^{\prime}$: time dilation. Note that the two events have $\Delta s^{2}=\left(c \Delta t^{\prime}\right)^{2}$ in the prime frame and $\Delta s^{2}=(c \Delta t)^{2}-\Delta x^{2}$ and they agree since $\Delta t=\gamma \Delta t^{\prime}$ and $\Delta x^{2}=v^{2} \Delta t^{2}$.

