
2/19/20 Lecture outline

⋆ Reading: Taylor sections 15.4 to 15.14.

• Last week we discussed how xµ = (ct, ~x) behaves under Lorentz transformations,

e.g. boosts along the x axis by some relative velocity vrel. Let’s write this as x
µ′

= Λµ′

ν xν .

Likewise, dxµ = Λµ′

ν dxν . Aside: this gives v/c = dx
cdt = βrelγreldt

′+γreldx
′

γrelcdt′+βrelγreldx′
= βrel+β′

1+βrelβ′
,

where β′ = dx′/dt/, which is the relativistic velocity addition formula.

• xµ and dxµ are examples of 4-vectors. All 4-vectors aµ = (a0,~a) transforms the

same way under Lorentz transformations, aµ
′

= Λµ′

ν aν , where Λµ′

ν can be a rotation (which

transforms ~a by the usual matrix with cos θ and sin θ, preserving dot products) or a boost

along any of the three space directions, which mixes a0 and the component of ~a along the

boost direction by the usual matrix with γrel and βrelγrel. The invariant interval can be

written as ds2 = ηµνdx
µdxν where ηµν ≡ diag(1,−1,−1,−1) (this is called the mostly

minus convention, and the book instead uses the mostly plus convention). ηµν is a two

index (symmetric) tensor and any tensor Xµν transforms like a 4-vector for each index, so

Xµ′ν′ = Λµ′
µΛν′

ν , which we can write in matrix form as X ′ = ΛXΛT . A special property

of η is that it is preserved by Loretnz transformations: η′ = ΛηΛT = η. This ensures that

ds2′ = ds2. Indeed, for any 4-vectors aµ and bµ, contracting the indices with ηµν gives a

Lorentz invariant: a · b ≡ a0b0 − ~a ·
~b ≡ aµbµ where bµ = ηµ′νb

ν = (b0,−~b). All Lorentz

related observers see the same value: a · b = a′ · b′; the invariant interval ds2 = dxµdxµ is

a special case of this. The proper time dτ =
√

ds2/c2 = dt/γ is Lorentz invariant.

• In physics we meet many vectors, and the following ones extend into 4-vectors:

position, velocity, momentum, force, current density, wavenumber, gradient. (Some vectors

instead combine into 4-tensors: ~E and ~B, and the energy flux, as we will discuss later.)

• Since dxµ is a 4-vector, and dτ = dt/γ is a Lorentz scalar, uµ = dxµ

dτ = dxµ

dt
dt
dτ =

γ(c, ~v) is a 4-vector version of velocity. Note that uµu
µ = c2.

• Addition of velocities, again: suppose that someone in the ′ frame throws an object

with velocity ~v′ = v1x̂. What is the velocity of the object as seen in the original frame.

One way to analyze this is to go to the ′′ frame, where the rock is at rest, and ask

what is the Lorentz transformation back to the lab frame. Thus

(

γT βT γT
βT γT γT

)

=
(

γ1 β1γ1
β1γ1 β1

)(

γ βγ
βγ β

)

, which gives the velocity addition formula βT = (β1+β)/(1+

β1β). This is equivalent to the comments in a previous lecture about rapidities adding,

where φ ≡ tanh−1(β) and then φT = φ+ φ1.
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Instead, we can get this result by using the velocity 4-vector: use the fact that the

observer in the ′ frame sees 4-velocity uµ′

= (γ1, γ1β1). Then we transform that to the

lab frame by the usual Lorentz transformation matrix to get u0 = dt
dτ

= γγ1(1 + ββ1) and

u1 = dx
dτ = γγ1(β + β1). Then the velocity as seen in the lab frame is dx/dt = u1/u0 =

(β + β1)/(1 + ββ1), as above. Note that u2′

= u2 for boosts along the x axis but that

v′y = dy
γ(dt−vreldx/c2)

= vyγ
−1(1− vxVrel/c

2)−1.

• Energy and momentum combine into a 4-vector pµ = (E/c, ~p), with pµp
µ = (mc)2.
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