2/19/20 Lecture outline
* Reading: Taylor sections 15.4 to 15.14.

e Last week we discussed how z* = (ct,r) behaves under Lorentz transformations,
e.g. boosts along the x axis by some relative velocity v,..;. Let’s write this as o = A’,j/a:”.
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Likewise, dz# = AL dx¥. Aside: this gives v/c = S = e gy = 1i5ap

where 3’ = dx’/dt/, which is the relativistic velocity addition formula.

e z# and dx* are examples of 4-vectors. All 4-vectors a* = (a°,@) transforms the
same way under Lorentz transformations, at = Aﬁ/a”, where Aﬁ/ can be a rotation (which
transforms @ by the usual matrix with cos § and sin 6, preserving dot products) or a boost
along any of the three space directions, which mixes a” and the component of @ along the
boost direction by the usual matrix with v,..; and B¢;7Vre;- The invariant interval can be
written as ds? = n,,dz*dz” where 1, = diag(1,—1,—1,—1) (this is called the mostly
minus convention, and the book instead uses the mostly plus convention). 7,, is a two
index (symmetric) tensor and any tensor X, transforms like a 4-vector for each index, so
X, = Ay# A7, which we can write in matrix form as X’ = AXA”T. A special property
of 1 is that it is preserved by Loretnz transformations: 7’ = AnAT = 1. This ensures that
ds* = ds?. Indeed, for any 4-vectors a* and b*, contracting the indices with 7, gives a
Lorentz invariant: a-b = a%° —@-b = atb,, where b, = n,,,b" = (b, —b). All Lorentz
related observers see the same value: a-b = a’ - b'; the invariant interval ds® = dztdx,, is
a special case of this. The proper time dr = \/m = dt/~ is Lorentz invariant.

e In physics we meet many vectors, and the following ones extend into 4-vectors:
position, velocity, momentum, force, current density, wavenumber, gradient. (Some vectors
instead combine into 4-tensors: E and B , and the energy flux, as we will discuss later.)

e Since dz* is a 4-vector, and dr = dt/v is a Lorentz scalar, u* = % = %j—: =
v(e, D) is a 4-vector version of velocity. Note that w,u” = 2.

e Addition of velocities, again: suppose that someone in the ’ frame throws an object

with velocity @/ = v;2. What is the velocity of the object as seen in the original frame.

One way to analyze this is to go to the ” frame, where the rock is at rest, and ask
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( 57; b ;’)’1 ) < 577 b 57), which gives the velocity addition formula S = (81 + 8)/(1+
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p16). This is equivalent to the comments in a previous lecture about rapidities adding,
where ¢ = tanh™(8) and then ¢p = ¢ + ¢1.

what is the Lorentz transformation back to the lab frame. Thus (
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Instead, we can get this result by using the velocity 4-vector: use the fact that the
observer in the ’ frame sees 4-velocity u# = (y1,7161). Then we transform that to the
lab frame by the usual Lorentz transformation matrix to get u® = j—i =v71(1+ BB1) and
ul = 4 = 441 (B + B1). Then the velocity as seen in the lab frame is dz/dt = u'/u® =
(B4 B1)/(1 + BB1), as above. Note that u? = u? for boosts along the z axis but that
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e Energy and momentum combine into a 4-vector p* = (E/c, p), with p,p* = (mc)?.



