\star Reading: Taylor sections 15.4 to 15.14 .

- Last week we discussed how $x^{\mu}=(c t, \vec{x})$ behaves under Lorentz transformations, e.g. boosts along the x axis by some relative velocity $v_{r e l}$. Let's write this as $x^{\mu^{\prime}}=\Lambda_{\nu}^{\mu^{\prime}} x^{\nu}$. Likewise, $d x^{\mu}=\Lambda_{\nu}^{\mu^{\prime}} d x^{\nu}$. Aside: this gives $v / c=\frac{d x}{c d t}=\frac{\beta_{r e l} \gamma_{r e l} d t^{\prime}+\gamma_{r e l} d x^{\prime}}{\gamma_{r e l} c d t^{\prime}+\beta_{r e l} \gamma_{r e l} d x^{\prime}}=\frac{\beta_{r e l}+\beta^{\prime}}{1+\beta_{r e l} \beta^{\prime}}$, where $\beta^{\prime}=d x^{\prime} / d t /$, which is the relativistic velocity addition formula.
- x^{μ} and $d x^{\mu}$ are examples of 4 -vectors. All 4 -vectors $a^{\mu}=\left(a^{0}, \vec{a}\right)$ transforms the same way under Lorentz transformations, $a^{\mu^{\prime}}=\Lambda_{\nu}^{\mu^{\prime}} a^{\nu}$, where $\Lambda_{\nu}^{\mu^{\prime}}$ can be a rotation (which transforms \vec{a} by the usual matrix with $\cos \theta$ and $\sin \theta$, preserving dot products) or a boost along any of the three space directions, which mixes a^{0} and the component of \vec{a} along the boost direction by the usual matrix with $\gamma_{\text {rel }}$ and $\beta_{\text {rel }} \gamma_{\text {rel }}$. The invariant interval can be written as $d s^{2}=\eta_{\mu \nu} d x^{\mu} d x^{\nu}$ where $\eta_{\mu \nu} \equiv \operatorname{diag}(1,-1,-1,-1)$ (this is called the mostly minus convention, and the book instead uses the mostly plus convention). $\eta_{\mu \nu}$ is a two index (symmetric) tensor and any tensor $X_{\mu \nu}$ transforms like a 4-vector for each index, so $X_{\mu^{\prime} \nu^{\prime}}=\Lambda_{\mu^{\prime}}{ }^{\mu} \Lambda_{\nu^{\prime}}{ }^{\nu}$, which we can write in matrix form as $X^{\prime}=\Lambda X \Lambda^{T}$. A special property of η is that it is preserved by Loretnz transformations: $\eta^{\prime}=\Lambda \eta \Lambda^{T}=\eta$. This ensures that $d s^{2 \prime}=d s^{2}$. Indeed, for any 4 -vectors a^{μ} and b^{μ}, contracting the indices with $\eta_{\mu \nu}$ gives a Lorentz invariant: $a \cdot b \equiv a^{0} b^{0}-\vec{a} \cdot \vec{b} \equiv a^{\mu} b_{\mu}$ where $b_{\mu}=\eta_{\mu^{\prime} \nu} b^{\nu}=\left(b_{0},-\vec{b}\right)$. All Lorentz related observers see the same value: $a \cdot b=a^{\prime} \cdot b^{\prime}$; the invariant interval $d s^{2}=d x^{\mu} d x_{\mu}$ is a special case of this. The proper time $d \tau=\sqrt{d s^{2} / c^{2}}=d t / \gamma$ is Lorentz invariant.
- In physics we meet many vectors, and the following ones extend into 4 -vectors: position, velocity, momentum, force, current density, wavenumber, gradient. (Some vectors instead combine into 4 -tensors: \vec{E} and \vec{B}, and the energy flux, as we will discuss later.)
- Since $d x^{\mu}$ is a 4-vector, and $d \tau=d t / \gamma$ is a Lorentz scalar, $u^{\mu}=\frac{d x^{\mu}}{d \tau}=\frac{d x^{\mu}}{d t} \frac{d t}{d \tau}=$ $\gamma(c, \vec{v})$ is a 4 -vector version of velocity. Note that $u_{\mu} u^{\mu}=c^{2}$.
- Addition of velocities, again: suppose that someone in the ' frame throws an object with velocity $\vec{v}^{\prime}=v_{1} \hat{x}$. What is the velocity of the object as seen in the original frame. One way to analyze this is to go to the " frame, where the rock is at rest, and ask what is the Lorentz transformation back to the lab frame. Thus $\left(\begin{array}{cc}\gamma_{T} & \beta_{T} \gamma_{T} \\ \beta_{T} \gamma_{T} & \gamma_{T}\end{array}\right)=$ $\left(\begin{array}{cc}\gamma_{1} & \beta_{1} \gamma_{1} \\ \beta_{1} \gamma_{1} & \beta_{1}\end{array}\right)\left(\begin{array}{cc}\gamma & \beta \gamma \\ \beta \gamma & \beta\end{array}\right)$, which gives the velocity addition formula $\beta_{T}=\left(\beta_{1}+\beta\right) /(1+$ $\beta_{1} \beta$). This is equivalent to the comments in a previous lecture about rapidities adding, where $\phi \equiv \tanh ^{-1}(\beta)$ and then $\phi_{T}=\phi+\phi_{1}$.

Instead, we can get this result by using the velocity 4 -vector: use the fact that the observer in the ' frame sees 4 -velocity $u^{\mu^{\prime}}=\left(\gamma_{1}, \gamma_{1} \beta_{1}\right)$. Then we transform that to the lab frame by the usual Lorentz transformation matrix to get $u^{0}=\frac{d t}{d \tau}=\gamma \gamma_{1}\left(1+\beta \beta_{1}\right)$ and $u^{1}=\frac{d x}{d \tau}=\gamma \gamma_{1}\left(\beta+\beta_{1}\right)$. Then the velocity as seen in the lab frame is $d x / d t=u^{1} / u^{0}=$ $\left(\beta+\beta_{1}\right) /\left(1+\beta \beta_{1}\right)$, as above. Note that $u^{2^{\prime}}=u^{2}$ for boosts along the x axis but that $v_{y}^{\prime}=\frac{d y}{\gamma\left(d t-v_{r e l} d x / c^{2}\right)}=v_{y} \gamma^{-1}\left(1-v_{x} V_{r e l} / c^{2}\right)^{-1}$.

- Energy and momentum combine into a 4 -vector $p^{\mu}=(E / c, \vec{p})$, with $p_{\mu} p^{\mu}=(m c)^{2}$.

