2/24/20 Lecture outline

* Reading: Taylor chapter 15.

• Last time: dx^{μ} is a 4-vector, and $d\tau = dt/\gamma$ is a Lorentz scalar, $u^{\mu} = \frac{dx^{\mu}}{d\tau} = \frac{dx^{\mu}}{dt} \frac{dt}{d\tau} = \gamma(c, \vec{v})$ is a 4-vector version of velocity. Note that $u_{\mu}u^{\mu} = c^2$.

• Energy and momentum combine into a 4-vector $p^{\mu} = (E/c, \vec{p})$, with $p_{\mu}p^{\mu} = (mc)^2$. So the mass m is Lorentz invariant. The energy is $E = \sqrt{(cp)^2 + (mc^2)^2}$ which, for $cp \ll mc^2$ we can expand as $E \approx mc^2 + \frac{p^2}{2m} + \dots$

For massive particles, $p^{\mu} = mu^{\mu}$, i.e. $E = \gamma mc^2$ and $\vec{p} = \gamma m\vec{v}$. For a m = 0 massless particle, like a photon, $p^{\mu}p_{\mu} = 0$ but we can still define E and \vec{p} . In fact, $p^{\mu} = \hbar k^{\mu}$ where $k^{\mu} = (\omega/c, \vec{k})$ with $\omega = ck$. For both massive and massless particles, $\vec{v} = \vec{p}c^2/E$.

• 4-vector version of acceleration: $a^{\mu} = \frac{d^2 x^{\mu}}{d\tau^2} = \frac{d}{d\tau}u^{\mu} = \gamma \frac{d}{dt}(\gamma \frac{dx^{\mu}}{dt}) = \gamma^2 \frac{d^2 x^{\mu}}{dt^2} + \gamma \frac{dx^{\mu}}{dt} \frac{d\gamma}{dt}$. The space component of the first term is proportional to the non-relativistic acceleration, but the vector in the second term need not even point in the same direction.

• The 4-vector version of force is $f^{\mu} = (power/c, \vec{f})$ and Newton's laws are $f^{\mu} = \frac{dp^{\mu}}{d\tau}$. Note that $\frac{dE}{d\tau} = \frac{d}{d\tau}\sqrt{(c\vec{p})^2 + (mc^2)^2} = \frac{c^2}{E}\vec{p}\cdot\frac{d\vec{p}}{d\tau} = \vec{v}\cdot\vec{f}$.

• Conservation of energy and momentum: for an isolated system we have translation invariance, and $f_{tot,ext}^{\mu} = 0$ and then $\sum_{initial particles,i} p_i^{\mu} = \sum_{final particles,f} p_f^{\mu}$. For example, $n \to p^+ e^- \bar{\nu}_e$, or $\pi^0 \to \gamma \gamma$. Mass is not conserved (e.g. π^0 is massive and the photons γ are massless), but the total energy and momentum are conserved. E.g. in the CM frame $\pi^0 \to \gamma \gamma$ each photon has $E = c|\vec{p}| = \frac{1}{2}m_{\pi^0}c^2$. Write $p_1^{\mu} = p_2^{\mu} + p_3^{\mu}$ and illustrate using $p^2 = m^2$ etc.

• Lorentz transformations are a symmetry of Nature, and this is ensured by having the action be Lorentz invariant. Let's start with a free, massive particle; we want to generalize $S \approx \int dt (\frac{1}{2}m\vec{v}^2)$. To get a Lorentz invariant, we can take $S = -mc^2 \int_{worldline} d\tau = -mc^2 \int dt \sqrt{1-\vec{v}^2/c^2}$. Gives $\vec{p} = \frac{\partial L}{\partial \vec{v}} = \gamma m\vec{v}$ and properly reduces to $L \approx \frac{1}{2}m\vec{v}^2$ if $v \ll c$.