* Reading: Taylor chapter 15.

- Last time: Lorentz transformations are a symmetry of Nature, and this is ensured by having the action be Lorentz invariant. Let's start with a free, massive particle; we want to generalize $S \approx \int d t\left(\frac{1}{2} m \vec{v}^{2}\right)$. To get a Lorentz invariant, we can take $S=-m c^{2} \int_{\text {worldline }} d \tau=-m c^{2} \int d t \sqrt{1-\vec{v}^{2} / c^{2}}$. Gives $\vec{p}=\frac{\partial L}{\partial \vec{v}}=\gamma m \vec{v}$ and properly reduces to $L \approx \frac{1}{2} m \vec{v}^{2}$ if $v \ll c$.

The Hamiltonian is $H=\vec{p} \cdot \vec{v}-L=\gamma m \vec{v}^{2}+\gamma^{-1} m c^{2}=\gamma m c^{2}=\sqrt{(c p)^{2}+m c^{2}}$. Verify that Hamilton's equations are satisfied, e.g. $\vec{v}=\partial H / \partial \vec{p}=c^{2} \vec{p} / E$.

- A traveling plane wave can be written as $\psi(t, \vec{x})=e^{i(\vec{k} \cdot \vec{x}-\omega t)}=e^{-i k_{\mu} x^{\mu}}$ (or its real or imaginary part). The phase factor is properly Lorentz invariant since $k^{\mu}=(\omega / c, \vec{k})$ transforms as a 4 -vector. The Lorentz transformation of k^{μ} gives the relativistic Doppler formula: in the prime frame, get $\omega^{\prime}=\gamma \omega-\beta \gamma k_{x}$ and $k_{x^{\prime}}=-\beta \gamma \omega+\gamma k_{x}$. For light we have $\omega=c k$ and $\omega^{\prime}=c k^{\prime}$. For example, for a light ray traveling along the x axis, taking $\omega^{\prime}=\omega_{0}$, then $\omega=\gamma(1+\beta) \omega_{0}=\omega_{0} / \gamma(1-\beta)=\omega_{0} \sqrt{\frac{1+\beta}{1-\beta}}$. Here β is the relative speed of the source towards the receiver. Contrast this with the non-relativistic Doppler effect for waves traveling in a medium. Suppose that the source is moving with velocity $v_{s} \hat{x}$ relative to the rest frame of the medium, and is at negative x relative to the observer, and that the observer is moving with velocity $v_{o} \hat{x}$ relative to the medium (source is moving towards the observer, and the observer is moving away from the source). The non-relativistic Doppler formula is $\omega_{o b s}^{N R D}=\left(\frac{1-v_{r} / c_{m}}{1-v_{s} / c_{m}}\right) \omega_{\text {source }}$, where $c_{m}=\omega / k$ is the speed of wave propagation in the medium. It does not depend only on $v_{r e l}$ because the air determines a rest frame. For $c_{m} \gg v_{r, s}$ we get $\omega_{o b s}^{N R D} \approx\left(1+v_{r e l} / c_{m}\right) \omega_{\text {source }}$ with $v_{r e l}=v_{s}-v_{r}$. For $\beta \ll 1$, the relativistic Doppler formula is similar: $\omega \approx(1+\beta) \omega_{0}$.
- Electromagnetism is nicely relativistic. The source terms in Maxwell's equations organize into a 4 -vector: $J^{\mu}=(c \rho, \vec{J})$. Charge conservation of $Q=\int d^{3} x \rho$ and current conservation. It can be written as $\partial_{\mu} J^{\mu}=0$, so it is Lorentz invariant. Next time: $Q=Q^{\prime}$ is Lorentz invariant.

