
1/8/20 Lecture outline

⋆ Reading: Taylor sections 13.1, 13.2, 13.3 , Chapter 8.

• Briefly emphasize something from Hamiltonian mechanics: H = H(qa(t), pa(t), t) so

dH

dt
=

∂H

∂t
+
∑

a

(
∂H

∂qa
q̇a +

∂H

∂pa
ṗa) =

∂H

∂t
= −

∂L

∂t
.

Where we used Hamilton’s equations q̇a = ∂H/∂pa and ṗa = −∂H/∂qa. So if H does not

explicitly depend on time, then dH/dt = 0 and H is a constant of the motion, as discussed

last time.

• Continue with two-body central force motion. The Lagrangian is assumed to be

translationally invariant in space and time, and rotationally invariant, so U(~x1, ~x2, t) =

U(r) with r = |~x1 − ~x2|:

L = 1

2
m1~̇x1

2

+ 1

2
m2~̇x2

2

− U(r).

The symmetries imply conservation of total momentum, energy, and angular momentum:

~ptot = ~p1 + ~p2 = m1~̇x1 +m2~̇x2, H =
~p2
1

2m1

+
~p2
2

2m2

+ U(r), ~Ltot = ~x1 × ~p1 + ~x2 × ~p2

~̇ptot = Ḣ = ~̇Ltot = 0.

• We can choose an inertial frame of reference where ~ptot = 0; this is called the

center of momentum (or sometimes called center of mass) frame. This means that ~R =

(m1~x1 + m2~x2)/M , with M ≡ m1 + m2 is chosen to be a constant. The dynamical

coordinate is then just the relative position ~r ≡ r1 − ~r2 and we can write

L = 1

2
M ~̇R

2

+ 1

2
µ~̇r

2

− U(r) → L = 1

2
µ~̇r

2

− U(r), µ ≡
m1m2

m1 +m2

.

Then ~L = ~r × ~p, ~p = µ~̇r and ~̇p = −∇U(r) = −dU
dr

r̂. The r here can be considered as in

either spherical or cylindrical coordinates. Cylindrical coordinates are better: since ~L is

constant, the motion stays in a plane. We can choose ~L = ℓẑ and then the motion is in

the (x, y) plane, ż = 0, and the motion has generalized coordinates r and φ with

L = 1

2
µṙ2 + 1

2
µr2φ̇2 − U(r),

and the EOM are

pr = µṙ, ṗr =
∂L

∂r
= µrφ̇2 −

dU

dr
, pφ = ℓ = µr2φ̇, ṗφ = 0.
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The φ EOM can be integrated to give

φ(t) = φ0 +

∫ t

0

dt′ℓ/µr2(t′).

The EOM for r is equivalent to a 1d theory with

Leff (r, ṙ) =
1

2
µṙ2 − Ueff (r), Ueff ≡

ℓ2

2mr2
+ U(r).

(Note that we substituted φ̇ = ℓ/µr2 only *after* computing the r equations of motion, and

then wrote Ueff . Eliminating φ̇ too soon gives a wrong sign term in Ueff .) Conservation

of energy:

H = E = 1

2
µṙ2 + Ueff (r).

• Using above equations, we can solve the problem, reducing it to the computation of

two integrals. Rewrite the energy conservation equation as

dt =
dr√

2

µ
(E − U(r)− ℓ2

2µr2
)

and integrate to get

t =

∫ r

r0

dr√
2

µ
(E − U(r)− ℓ2

2µr2
)
,

which can be inverted to find r(t). Then rewrite the conservation of angular momentum

equation as

dφ =
ℓdt

µr2

and integrate both sides to get

φ− φ0 = ℓ

∫ t

0

dt

µr2(t)
.

We thus have obtained, in principle, r(t) and φ(t).

• The case U ∼ r2 is the 3d SHO, which separates into 3 copies of the 1d SHO. The

case U ∼ 1/r is the Coulomb potential and it is also very special, e.g. it leads to closed

orbits; this is related to the fact that it has an additional conserved quantity called the

Laplace-Runge-Lenz vector ~A = ~p× ~L− µkr̂ is conserved for V = −k/r.

Our main example: U(r) = −Gm1m2/r. Ueff (r) = −Gm1m2

r
+ ℓ2

2µr2
. Illustrate turning

points rmin and rmax for case E < 0: bounded orbit. For E > 0, there is a rmin but no

rmax: unbounded orbit.
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