
3/6/20 Lecture outline

⋆ Reading: Taylor chapter 16.1 to 16.11

• String: S =
∫

dtdxL(ψ, ∂tψ, ∂xψ) has δS =
∫

dtdxδψ(t, x)(∂L
∂ψ

− ∂t
∂L

∂(∂xψ)
−

∂x
∂L

∂(∂xψ)
) + δSbndy where we integrated by parts and δSbndy =

∫

dtdx∂x(δψ
∂L

∂(∂xψ)
) =

∫

dtδψ ∂L
∂(∂xψ)

|ends is the kind of term that is usually dropped (e.g. if the endpoints are at

infinity and the fields anyway fall off there), but for a finite length string we need to impose

separately that Sbndy = 0. There are two options: either δψ|end = 0 or ∂L
∂(∂xψ)

)|end = 0;

these are called Dirichlet (fixed end) and Neumann BCs, respectively.

• Let Pt ≡ ∂L
∂(∂tψ)

and Px ≡ ∂L
∂(∂xψ)

. Least action gives ∂Pt

∂t
+ ∂Px

∂x
= ∂L

∂ψ
.

The Hamiltonian is H =
∫

dxH, where the Hamiltonian density is H = Pt∂tψ − L.

As we will discuss, space and time translation symmetry leads to a conserved stress-energy

tensor Tµν = ∂L
∂(∂µψ)

∂νψ − ηµνL, with ∂µT
µν = 0. In particular, if L does not depend

explicitly on t then H = T 00 satisfies the conservation equation ∂tH + ∂xjE = 0 with

jE = ∂L
∂(∂xψ)

∂tψ the energy current flux.

• Uniform string of mass density µ, tension T , with ψ(t, x) = y(t, x) the displacement

from equilibrium in the y direction. An element of length dx has kinetic energy density
1
2µdx(∂ty)

2 and potential energy density Tdℓ = 1
2T (

∂y
∂x

)2dx which comes from Taylor

expanding dℓ =
√

dx2 + dy2 − dx. Thus S =
∫

dtdxL with L = 1
2µ(∂ty)

2 − 1
2T (∂xy)

2.

Varying δyS = 0 gives the EOM, which can also be derived directly from dFy = µ∂2t y =

T sinφx+dx − T sinφ|x and sinφ ≈ tanφ = ∂y
∂x

so dFy = dxT ∂2ψ
∂x2 . The EOM are the

wave equation ( 1
c2

∂2

∂t2
− ∂2

∂x2 )ψ(t, x) = 0 with c =
√

T/µ. The wave equation is solved by

y = yR(x− ct) + yL(x+ ct) for arbitrary functions yR and yL.

The energy / Hamiltonian density is H = Pt∂tψ − L = 1
2µ(∂ty)

2 + 1
2T (∂xy)

2. To see

its conservation law, note that ∂tH + ∂x(−T∂xy∂ty) = 0 so jE = −T∂xy∂ty is the energy

flux along the string. For y = yR(x−ct)+yL(x+ct), get E = T [(y′R(x−ct))
2+(y′L(x+ct))

2]

and jE = cT [(y′R(x− ct))2 − (y′L(x+ ct))2].
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