3/6/20 Lecture outline

* Reading: Taylor chapter 16.1 to 16.11

- String: $S=\int d t d x \mathcal{L}\left(\psi, \partial_{t} \psi, \partial_{x} \psi\right)$ has $\delta S=\int d t d x \delta \psi(t, x)\left(\frac{\partial \mathcal{L}}{\partial \psi}-\partial_{t} \frac{\partial \mathcal{L}}{\partial\left(\partial_{x} \psi\right)}-\right.$ $\left.\partial_{x} \frac{\partial \mathcal{L}}{\partial\left(\partial_{x} \psi\right)}\right)+\delta S_{b n d y}$ where we integrated by parts and $\delta S_{b n d y}=\int d t d x \partial_{x}\left(\delta \psi \frac{\partial \mathcal{L}}{\partial\left(\partial_{x} \psi\right)}\right)=$ $\left.\int d t \delta \psi \frac{\partial \mathcal{L}}{\partial\left(\partial_{x} \psi\right)}\right|_{\text {ends }}$ is the kind of term that is usually dropped (e.g. if the endpoints are at infinity and the fields anyway fall off there), but for a finite length string we need to impose separately that $S_{b n d y}=0$. There are two options: either $\left.\delta \psi\right|_{\text {end }}=0$ or $\left.\frac{\partial \mathcal{L}}{\partial\left(\partial_{x} \psi\right)}\right)\left.\right|_{e n d}=0$; these are called Dirichlet (fixed end) and Neumann BCs, respectively.
- Let $\mathcal{P}^{t} \equiv \frac{\partial \mathcal{L}}{\partial\left(\partial_{t} \psi\right)}$ and $\mathcal{P}^{x} \equiv \frac{\partial \mathcal{L}}{\partial\left(\partial_{x} \psi\right)}$. Least action gives $\frac{\partial \mathcal{P}^{t}}{\partial t}+\frac{\partial \mathcal{P}^{x}}{\partial x}=\frac{\partial \mathcal{L}}{\partial \psi}$.

The Hamiltonian is $H=\int d x \mathcal{H}$, where the Hamiltonian density is $\mathcal{H}=\mathcal{P}^{t} \partial_{t} \psi-\mathcal{L}$. As we will discuss, space and time translation symmetry leads to a conserved stress-energy tensor $T^{\mu \nu}=\frac{\partial \mathcal{L}}{\partial\left(\partial_{\mu} \psi\right)} \partial_{\nu} \psi-\eta_{\mu \nu} \mathcal{L}$, with $\partial_{\mu} T^{\mu \nu}=0$. In particular, if \mathcal{L} does not depend explicitly on t then $\mathcal{H}=T^{00}$ satisfies the conservation equation $\partial_{t} \mathcal{H}+\partial_{x} j_{\mathcal{E}}=0$ with $j_{\mathcal{E}}=\frac{\partial \mathcal{L}}{\partial\left(\partial_{x} \psi\right)} \partial_{t} \psi$ the energy current flux.

- Uniform string of mass density μ, tension T, with $\psi(t, x)=y(t, x)$ the displacement from equilibrium in the y direction. An element of length $d x$ has kinetic energy density $\frac{1}{2} \mu d x\left(\partial_{t} y\right)^{2}$ and potential energy density $T d \ell=\frac{1}{2} T\left(\frac{\partial y}{\partial x}\right)^{2} d x$ which comes from Taylor expanding $d \ell=\sqrt{d x^{2}+d y^{2}}-d x$. Thus $S=\int d t d x \mathcal{L}$ with $\mathcal{L}=\frac{1}{2} \mu\left(\partial_{t} y\right)^{2}-\frac{1}{2} T\left(\partial_{x} y\right)^{2}$. Varying $\delta_{y} S=0$ gives the EOM, which can also be derived directly from $d F_{y}=\mu \partial_{t}^{2} y=$ $T \sin \phi_{x+d x}-\left.T \sin \phi\right|_{x}$ and $\sin \phi \approx \tan \phi=\frac{\partial y}{\partial x}$ so $d F_{y}=d x T \frac{\partial^{2} \psi}{\partial x^{2}}$. The EOM are the wave equation $\left(\frac{1}{c^{2}} \frac{\partial^{2}}{\partial t^{2}}-\frac{\partial^{2}}{\partial x^{2}}\right) \psi(t, x)=0$ with $c=\sqrt{T / \mu}$. The wave equation is solved by $y=y_{R}(x-c t)+y_{L}(x+c t)$ for arbitrary functions y_{R} and y_{L}.

The energy / Hamiltonian density is $\mathcal{H}=\mathcal{P}^{t} \partial_{t} \psi-\mathcal{L}=\frac{1}{2} \mu\left(\partial_{t} y\right)^{2}+\frac{1}{2} T\left(\partial_{x} y\right)^{2}$. To see its conservation law, note that $\partial_{t} \mathcal{H}+\partial_{x}\left(-T \partial_{x} y \partial_{t} y\right)=0$ so $j_{\mathcal{E}}=-T \partial_{x} y \partial_{t} y$ is the energy flux along the string. For $y=y_{R}(x-c t)+y_{L}(x+c t)$, get $\mathcal{E}=T\left[\left(y_{R}^{\prime}(x-c t)\right)^{2}+\left(y_{L}^{\prime}(x+c t)\right)^{2}\right]$ and $j_{\mathcal{E}}=c T\left[\left(y_{R}^{\prime}(x-c t)\right)^{2}-\left(y_{L}^{\prime}(x+c t)\right)^{2}\right]$.

