3/9/20 Lecture outline

***** Reading: Taylor chapter 16.1 to 16.11

• Last time: string has $S = \int dt dx \mathcal{L}(\psi, \partial_t \psi, \partial_x \psi)$. Get Euler-Largange equations and also need to impose either $\delta \psi|_{end} = 0$ or $\frac{\partial \mathcal{L}}{\partial(\partial_x \psi)}|_{end} = 0$; these are called Dirichlet (fixed end) and Neumann BCs, respectively. Let $\mathcal{P}^t \equiv \frac{\partial \mathcal{L}}{\partial(\partial_t \psi)}$ and $\mathcal{P}^x \equiv \frac{\partial \mathcal{L}}{\partial(\partial_x \psi)}$. Least action gives $\frac{\partial \mathcal{P}^t}{\partial t} + \frac{\partial \mathcal{P}^x}{\partial x} = \frac{\partial \mathcal{L}}{\partial \psi}$. The Hamiltonian is $H = \int dx \mathcal{H}$, where the Hamiltonian density is $\mathcal{H} = \mathcal{P}^t \partial_t \psi - \mathcal{L}$. As we will discuss, space and time translation symmetry leads to a conserved stress-energy tensor $T^{\mu\nu} = \frac{\partial \mathcal{L}}{\partial(\partial_\mu \psi)} \partial_\nu \psi - \eta_{\mu\nu} \mathcal{L}$, with $\partial_\mu T^{\mu\nu} = 0$. In particular, if \mathcal{L} does not depend explicitly on t then $\mathcal{H} = T^{00}$ satisfies the conservation equation $\partial_t \mathcal{H} + \partial_x j_{\mathcal{E}} = 0$ with $j_{\mathcal{E}} = \frac{\partial \mathcal{L}}{\partial(\partial_x \psi)} \partial_t \psi$ the energy current flux.

• Uniform string of mass density μ , tension T, with $\psi(t,x) = y(t,x)$ has $\mathcal{L} = \frac{1}{2}\mu(\partial_t y)^2 - \frac{1}{2}T(\partial_x y)^2$. The EOM are the wave equation $(\frac{1}{c^2}\frac{\partial^2}{\partial t^2} - \frac{\partial^2}{\partial x^2})\psi(t,x) = 0$ with $c = \sqrt{T/\mu}$. The wave equation is solved by $y = y_R(x - ct) + y_L(x + ct)$ for arbitrary functions y_R and y_L .

The energy / Hamiltonian density is $\mathcal{H} = \mathcal{P}^t \partial_t \psi - \mathcal{L} = \frac{1}{2} \mu (\partial_t y)^2 + \frac{1}{2} T (\partial_x y)^2$. To see its conservation law, note that $\partial_t \mathcal{H} + \partial_x (-T \partial_x y \partial_t y) = 0$ so $j_{\mathcal{E}} = -T \partial_x y \partial_t y$ is the energy flux along the string. For $y = y_R(x - ct) + y_L(x + ct)$, get $\mathcal{E} = T[(y'_R(x - ct))^2 + (y'_L(x + ct))^2]$ and $j_{\mathcal{E}} = cT[(y'_R(x - ct))^2 - (y'_L(x + ct))^2]$.

The traveling wave also carries momentum flux density Π_x along the direction of the string. The energy and momentum conservation laws can be combined into a stressenergy tensor that looks similar to what we saw in relativity: $T^{\mu\nu} = \frac{\partial \mathcal{L}}{\partial(\partial_{\mu}y)}\partial^{\nu}y - \eta^{\mu\nu}\mathcal{L}$ is the conservation law associated with translation symmetry in (ct, x), with $\partial_{\mu}T^{\mu\nu} = 0$. We can write everything to look similar to relativity in 1+1d: $\mathcal{L} = \frac{1}{2}T\partial_{\mu}y\partial^{\mu}y$ where $\partial_{\mu} = (\frac{\partial}{c\partial t}, \frac{\partial}{\partial x})$ and $\eta_{\mu\nu} = \eta^{\mu\nu} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$. The EOM are $\partial_{\mu}\partial^{\mu}y = 0$. The stress-tensor is $T^{\mu\nu} = T\partial^{\mu}y\partial^{\nu}y - \frac{1}{2}T\eta^{\mu\nu}\partial_{\lambda}y\partial^{\lambda}y$, and we can verify that it is property symmetric and conserved $T^{\mu\nu} = T^{\nu\mu}$ and $\partial_{\mu}T^{\mu\nu} = 0$, and $T^{00} = \mathcal{H}$, etc.