3/9/20 Lecture outline

* Reading: Taylor chapter 16.1 to 16.11

- Last time: string has $S=\int d t d x \mathcal{L}\left(\psi, \partial_{t} \psi, \partial_{x} \psi\right)$. Get Euler-Largange equations and also need to impose either $\left.\delta \psi\right|_{\text {end }}=0$ or $\left.\frac{\partial \mathcal{L}}{\partial\left(\partial_{x} \psi\right)}\right)\left.\right|_{\text {end }}=0$; these are called Dirichlet (fixed end) and Neumann BCs, respectively. Let $\mathcal{P}^{t} \equiv \frac{\partial \mathcal{L}}{\partial\left(\partial_{t} \psi\right)}$ and $\mathcal{P}^{x} \equiv \frac{\partial \mathcal{L}}{\partial\left(\partial_{x} \psi\right)}$. Least action gives $\frac{\partial \mathcal{P}^{t}}{\partial t}+\frac{\partial \mathcal{P}^{x}}{\partial x}=\frac{\partial \mathcal{L}}{\partial \psi}$. The Hamiltonian is $H=\int d x \mathcal{H}$, where the Hamiltonian density is $\mathcal{H}=\mathcal{P}^{t} \partial_{t} \psi-\mathcal{L}$. As we will discuss, space and time translation symmetry leads to a conserved stress-energy tensor $T^{\mu \nu}=\frac{\partial \mathcal{L}}{\partial\left(\partial_{\mu} \psi\right)} \partial_{\nu} \psi-\eta_{\mu \nu} \mathcal{L}$, with $\partial_{\mu} T^{\mu \nu}=0$. In particular, if \mathcal{L} does not depend explicitly on t then $\mathcal{H}=T^{00}$ satisfies the conservation equation $\partial_{t} \mathcal{H}+\partial_{x} j_{\mathcal{E}}=0$ with $j_{\mathcal{E}}=\frac{\partial \mathcal{L}}{\partial\left(\partial_{x} \psi\right)} \partial_{t} \psi$ the energy current flux.
- Uniform string of mass density μ, tension T, with $\psi(t, x)=y(t, x)$ has $\mathcal{L}=$ $\frac{1}{2} \mu\left(\partial_{t} y\right)^{2}-\frac{1}{2} T\left(\partial_{x} y\right)^{2}$. The EOM are the wave equation $\left(\frac{1}{c^{2}} \frac{\partial^{2}}{\partial t^{2}}-\frac{\partial^{2}}{\partial x^{2}}\right) \psi(t, x)=0$ with $c=\sqrt{T / \mu}$. The wave equation is solved by $y=y_{R}(x-c t)+y_{L}(x+c t)$ for arbitrary functions y_{R} and y_{L}.

The energy / Hamiltonian density is $\mathcal{H}=\mathcal{P}^{t} \partial_{t} \psi-\mathcal{L}=\frac{1}{2} \mu\left(\partial_{t} y\right)^{2}+\frac{1}{2} T\left(\partial_{x} y\right)^{2}$. To see its conservation law, note that $\partial_{t} \mathcal{H}+\partial_{x}\left(-T \partial_{x} y \partial_{t} y\right)=0$ so $j_{\mathcal{E}}=-T \partial_{x} y \partial_{t} y$ is the energy flux along the string. For $y=y_{R}(x-c t)+y_{L}(x+c t)$, get $\mathcal{E}=T\left[\left(y_{R}^{\prime}(x-c t)\right)^{2}+\left(y_{L}^{\prime}(x+c t)\right)^{2}\right]$ and $j_{\mathcal{E}}=c T\left[\left(y_{R}^{\prime}(x-c t)\right)^{2}-\left(y_{L}^{\prime}(x+c t)\right)^{2}\right]$.

The traveling wave also carries momentum flux density Π_{x} along the direction of the string. The energy and momentum conservation laws can be combined into a stressenergy tensor that looks similar to what we saw in relativity: $T^{\mu \nu}=\frac{\partial \mathcal{L}}{\partial\left(\partial_{\mu} y\right)} \partial^{\nu} y-\eta^{\mu \nu} \mathcal{L}$ is the conservation law associated with translation symmetry in $(c t, x)$, with $\partial_{\mu} T^{\mu \nu}=0$. We can write everything to look similar to relativity in $1+1 \mathrm{~d}: \mathcal{L}=\frac{1}{2} T \partial_{\mu} y \partial^{\mu} y$ where $\partial_{\mu}=\left(\frac{\partial}{c \partial t}, \frac{\partial}{\partial x}\right)$ and $\eta_{\mu \nu}=\eta^{\mu \nu}=\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)$. The EOM are $\partial_{\mu} \partial^{\mu} y=0$. The stress-tensor is $T^{\mu \nu}=T \partial^{\mu} y \partial^{\nu} y-\frac{1}{2} T \eta^{\mu \nu} \partial_{\lambda} y \partial^{\lambda} y$, and we can verify that it is property symmetric and conserved $T^{\mu \nu}=T^{\nu \mu}$ and $\partial_{\mu} T^{\mu \nu}=0$, and $T^{00}=\mathcal{H}$, etc.

