* Reading: Taylor chapter 16.1 to 16.11

- Last time: string has $S=\int d t d x \mathcal{L}\left(\psi, \partial_{t} \psi, \partial_{x} \psi\right)$. Get Euler-Largange equations and also need to impose either $\left.\delta \psi\right|_{\text {end }}=0$ or $\left.\frac{\partial \mathcal{L}}{\partial\left(\partial_{x} \psi\right)}\right)\left.\right|_{\text {end }}=0$; these are called Dirichlet (fixed end) and Neumann BCs, respectively. Let $\mathcal{P}^{t} \equiv \frac{\partial \mathcal{L}}{\partial\left(\partial_{t} \psi\right)}$ and $\mathcal{P}^{x} \equiv \frac{\partial \mathcal{L}}{\partial\left(\partial_{x} \psi\right)}$. Least action gives $\frac{\partial \mathcal{P}^{t}}{\partial t}+\frac{\partial \mathcal{P}^{x}}{\partial x}=\frac{\partial \mathcal{L}}{\partial \psi}$. Space and time translation symmetry leads to a conserved stress-energy tensor $T^{\mu \nu}=\frac{\partial \mathcal{L}}{\partial\left(\partial_{\mu} \psi\right)} \partial_{\nu} \psi-\eta_{\mu \nu} \mathcal{L}$, with $\partial_{\mu} T^{\mu \nu}=0$. In particular, if \mathcal{L} does not depend explicitly on t then $\mathcal{H}=T^{00}$ satisfies the conservation equation $\partial_{t} \mathcal{H}+\partial_{x} j_{\mathcal{E}}=0$ with $j_{\mathcal{E}}=\frac{\partial \mathcal{L}}{\partial\left(\partial_{x} \psi\right)} \partial_{t} \psi$ the energy current flux.

Uniform string of mass density μ, tension T, with $\psi(t, x)=y(t, x)$ has $\mathcal{L}=\frac{1}{2} \mu\left(\partial_{t} y\right)^{2}-$ $\frac{1}{2} T\left(\partial_{x} y\right)^{2}$. The EOM are the wave equation $\left(\frac{1}{c^{2}} \frac{\partial^{2}}{\partial t^{2}}-\frac{\partial^{2}}{\partial x^{2}}\right) \psi(t, x)=0$ with $c=\sqrt{T / \mu}$. Write it to look similar to relativity in $1+1 \mathrm{~d}: \mathcal{L}=\frac{1}{2} T \partial_{\mu} y \partial^{\mu} y$ where $\partial_{\mu}=\left(\frac{\partial}{c \partial t}, \frac{\partial}{\partial x}\right)$ and $\eta_{\mu \nu}=\eta^{\mu \nu}=\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)$. The EOM are $\partial_{\mu} \partial^{\mu} y=0$. The stress-tensor is $T^{\mu \nu}=T \partial^{\mu} y \partial^{\nu} y-$ $\frac{1}{2} T \eta^{\mu \nu} \partial_{\lambda} y \partial^{\lambda} y$, and we can verify that it is property symmetric and conserved $T^{\mu \nu}=T^{\nu \mu}$ and $\partial_{\mu} T^{\mu \nu}=0$, and $T^{00}=\mathcal{H}=\frac{1}{2} \mu\left(\partial_{t} y\right)^{2}+\frac{1}{2} T\left(\partial_{x} y\right)^{2}, j_{\mathcal{E}}=\frac{\partial \mathcal{L}}{\partial\left(\partial_{x} \psi\right)} \partial_{t} \psi=-T \partial_{x} y \partial_{t} y$.

- Consider string with $x \in[0, L]$. The BCs at the ends are either Dirichlet, $\left.y(t, x)\right|_{\text {end }}=0$, or Neumann, $\left.\frac{\partial}{\partial x} y(t, x)\right|_{\text {end }}=0$. Note that (N) BCs give $j_{\mathcal{E}}=0$. Consider e.g. the case where the BCs are D at each end. Then $y(x, t)=\sum_{n=1}^{\infty} \sin \left(\frac{n \pi x}{L}\right)\left(A_{n} \cos \omega_{n} t+\right.$ $\left.B_{n} \sin \omega_{n} t\right)$ solves the wave equation if $\omega_{n}=c k_{n}=c n \pi / L$. Get A_{n} and B_{n} from the FT of the initial position and velocity. Exercise: compute \mathcal{H} and $j_{\mathcal{E}}$. Is the total energy $H=\int_{0}^{L} d x \mathcal{H}$ a constant? Consider also $j_{\mathcal{E}}$ at ends, and the time average.
- There is a natural generalization: $S_{K G}=\int d t d^{3} x\left(\frac{1}{2} \partial_{\mu} \phi \partial^{\mu} \phi-\frac{1}{2} m^{2} \phi^{2}\right)$. The EOM are the Klein-Gordon equation: $\left(\partial_{\mu} \partial^{\mu}+m^{2}\right) \phi=0$. A solution is $\phi \sim a(k) e^{-i k_{\mu} x^{\mu}}+c . c$. if $k^{2}=m^{2}$. Using $p^{\mu}=\hbar k^{\mu}$ with $\hbar=1$, this is the relativistic relation $p^{2}=m^{2}$ for a particle of mass m. Indeed, upon quantization, ϕ is like the quantum \hat{x} of a SHO, i.e. it can be written in terms of creation and annihilation operators, with quanta with mass m.
- Recall pressure: in a static, ideal fluid, the surface force $d \vec{F}$ on any area element $d \vec{A}$ is $d \vec{F}=-p d \vec{A}$. More generally, the area element $d \vec{A}$ can have forces $d F^{i}=\sum_{j=1}^{3} \sigma^{i j} d A^{j}$ where $\sigma^{i j}$ is called the stress tensor and, for the case of a static, ideal fluid $\sigma^{i j}=-p \delta^{i j}$. If we consider a tiny square in the (12) plane then it would have torque around the 3 axis $\sim\left(\sigma^{12}-\sigma^{21}\right)$ but if we scale the lengths to zero the angular momentum scales to zero more rapidly than this torque, which proves that $\sigma^{i j}=\sigma^{j i}$. The $\sigma^{i j}$ are the space components of the tensor $T^{\mu \nu}$ that we discussed in relativity.

