3/13/20 Lecture outline

* Reading: Taylor chapter 16.1 to 16.11

• Last time: recall pressure: in a static, ideal fluid, the surface force $d\vec{F}$ on any area element $d\vec{A}$ is $d\vec{F} = -pd\vec{A}$. More generally, the area element $d\vec{A}$ can have forces $dF^i = \sum_{j=1}^3 \sigma^{ij} dA^j$ where σ^{ij} is called the stress tensor and, for the case of a static, ideal fluid $\sigma^{ij} = -p\delta^{ij}$. 9 $\nabla = \begin{pmatrix} -P & O & O \\ O & -P & O \end{pmatrix}$ Ideal Fluid more generally, off dicgonal components of 0 -> shear forces sheer force 1 to e.g. 40 sher

• If we consider a tiny square in the (12) plane then it would have torque around the 3 axis ~ $(\sigma^{12} - \sigma^{21})$ but if we scale the lengths to zero the angular momentum scales to zero more rapidly than this torque, which proves that $\sigma^{ij} = \sigma^{ji}$. The σ^{ij} stress tensor components are the space components of the stress-energy tensor $T^{\mu\nu}$ that we discussed in relativity: $T^{ij} = -\sigma^{ij}$. Indeed, $cP^i = \int_V d^3x T^{i0}$ and then $\frac{dP^i}{dt} = \int d^3x \partial_0 T^{i0} =$ $-\int d^3x \partial_j T^{ij} = \int dA_j \sigma^{ij}$ where we used $\partial_\mu T^{\mu\nu} = 0$ and Gauss' law for integrating a divergence. The result fits with $dF^i = \sigma^{ij} dA^j$. For a closed surface ∂dV that is the boundary of dV, get $dF^i = \partial_i \sigma^{ij} dV$; for the case of an ideal static fluid this becomes $d\vec{F} = -\nabla p dV.$ $qdF = \nabla z_1 dA$ $T_2F = \nabla z_2 dA$ $dF = D_{1} dA$ $d\Gamma_3 = (\Gamma_{21} - \Gamma_{12}) I dA \stackrel{!}{=}$ \mathcal{O} D JI <u>.</u> $\frac{d\vec{P}}{dt} = \int dV \quad \partial_j \quad \nabla \quad V = \int dA^j \nabla \dot{V}$ dxdy) b(5+95) $dF_2 = (P(z) - P(z + dz))dA$ 2.9 $2 = - \frac{2}{2} dx dy dz$

• Consider displacements in a solid from equilibrium: $\vec{u}(t, \vec{x}) = \vec{x}' - \vec{x}$, where \vec{x}' is the deformed position. The \vec{u} is the analog of our displacement y(x,t) in the case of a string. We can picture a bunch of coupled oscillators, and $\vec{u}(t, \vec{x})$ encodes their displacement from equilibrium. We expect to get a linear wave equation for \vec{u} in the simplest cases, with small displacements from equilibrium.

 $\vec{u}(t, \vec{x}) = displand position.$

• The \vec{u} lead to a 3×3 symmetric tensor called the strain tensor. One way to see it is to note that the deformation leads to $d\ell^{'2} = d\vec{x}'^2 = (d\vec{x} + d\vec{u})^2 = d\ell^2 + 2u_{ij}dx_idx_j$, where $u_{ij} \equiv \frac{1}{2}(\partial_i u_j + \partial_j u_i + \partial_i u_k \partial_j u_k) \approx \frac{1}{2}(\partial_i u_j + \partial_j u_i)$, where the last term is dropped because displacements are usually small. u_{ij} is called the strain tensor. The book calls it **E**. As you checked in the HW, rotations do not contribute to u_{ij} because they are antisymmetric.

$$\vec{u} = \vec{x}' - \vec{x} \quad \rightarrow (d\vec{x}')^2 = (d\vec{x} + d\vec{u})^2$$

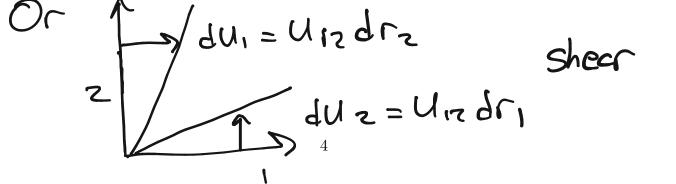
$$\equiv d\vec{x}^2 + zu_{ij} dx_i dx_j$$

$$U_{ij} \not X \quad \frac{1}{2} \left(\partial_i U_j + \partial_j U_i \right) = U_{ji}$$
For a ratio $X'^i = R_j^i X^j$

get
$$U_{ij} = 0$$
, good: (Diction \neq Strein.

e.g.
$$du' = edr' \rightarrow U_{ij} = eS_{ij}$$

stretches lengths by
$$e$$
, $\frac{dV}{V} = 3e$



• So we have two 3×3 tensors: the stress tensor σ_{ij} related to the forces, and the strain tensor u_{ij} related to the displacements. For a small displacements, Hooke's law linearly relates forces to displacement, as in the case of a spring. More generally, it linearly relates σ_{ij} and u_{ij} :

$$\mathbf{u} = \frac{1}{3\alpha\beta} [3\alpha\sigma - (\alpha - \beta)\mathbf{1}(\mathrm{tr}\sigma)] \qquad \leftrightarrow \qquad \sigma = \frac{(\alpha - \beta)}{3\alpha} (\mathrm{tr}\sigma)\mathbf{1} + \beta\mathbf{u}$$

Here $\alpha = 3MB$ and $\beta = 2SM$ where BM is the bulk modulus, and SM is the shear modulus. The bulk modulus arises as dp = -BMdV/V for the case of pressure only, so $\sigma_{ij} = -p\delta_{ij}$ and then $u_{ij} = e\delta_{ij}$ so $e = -p/\alpha = \frac{1}{3}dV/V$. The shear modulus arises when tru = 0 and then $\sigma = \beta u$. Young's modulus is YM= $3\alpha\beta/(2\alpha + \beta)$.

• The EOM for the displacement \vec{u} is $\rho \frac{\partial^2 u^i}{\partial t^2} = \rho g^i + \partial_j \sigma^{ij}$. Using Hooke's law gives Navier's equation for \vec{u} : get $\partial_j \sigma^{ij} = (BM + \frac{1}{3}SM) \nabla^i (\nabla \cdot \vec{u}) + SM \nabla^2 u^i$ and thus

$$\rho \frac{\partial^2 \vec{u}}{\partial t^2} = \rho \vec{g} + (BM + \frac{1}{3}SM) \, \nabla (\, \nabla \cdot \vec{u}) + SM \, \nabla^2 \vec{u}.$$

For longitudinal displacements e.g. $\vec{u} = (u_x(x,t), 0, 0)$, neglecting the \vec{g} term, this gives a wave equation with $c_{long} = \sqrt{(BM + \frac{4}{3}SM)/\rho}$. For transverse displacements, e.g. $\vec{u} = (0, u_y(x,t), 0)$, this gives a wave equation with $c_{trans} = \sqrt{SM/\rho}$. Note that $c_{long} > c_{trans}$; gives a way to determine how far away the earthquake was.

