
3/13/20 Lecture outline

! Reading: Taylor chapter 16.1 to 16.11

• Last time: recall pressure: in a static, ideal fluid, the surface force d "F on any

area element d "A is d "F = −pd "A. More generally, the area element d "A can have forces

dF i =
∑3

j=1
σijdAj where σij is called the stress tensor and, for the case of a static, ideal

fluid σij = −pδij .

1

¥451
D

I d e a l f l u i d 0=(-8%8+8)

m o r e generally, o f f diagonal
components o f a → s h e a r forces

e . g . force 1 - t o

§ ,
F -

shear
¢ ,

I she a r



• If we consider a tiny square in the (12) plane then it would have torque around the

3 axis ∼ (σ12 − σ21) but if we scale the lengths to zero the angular momentum scales to

zero more rapidly than this torque, which proves that σij = σji. The σij stress tensor

components are the space components of the stress-energy tensor Tµν that we discussed

in relativity: T ij = −σij . Indeed, cP i =
∫

V
d3xT i0 and then dP i

dt
=

∫

d3x∂0T i0 =

−
∫

d3x∂jT ij =
∫

dAjσij where we used ∂µTµν = 0 and Gauss’ law for integrating a

divergence. The result fits with dF i = σijdAj . For a closed surface ∂dV that is the

boundary of dV , get dF i = ∂jσijdV ; for the case of an ideal static fluid this becomes

d "F = −∇pdV .
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• Consider displacements in a solid from equilibrium: "u(t, "x) = "x′ −"x, where "x′ is the

deformed position. The "u is the analog of our displacement y(x, t) in the case of a string.

We can picture a bunch of coupled oscillators, and "u(t, "x) encodes their displacement from

equilibrium. We expect to get a linear wave equation for "u in the simplest cases, with

small displacements from equilibrium.
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• The "u lead to a 3× 3 symmetric tensor called the strain tensor. One way to see it is

to note that the deformation leads to d&
′
2 = d"x′2 = (d"x+ d"u)2 = d&2 + 2uijdxidxj , where

uij ≡
1

2
(∂iuj + ∂jui + ∂iuk∂juk) ≈

1

2
(∂iuj + ∂jui), where the last term is dropped because

displacements are usually small. uij is called the strain tensor. The book calls it E. As

you checked in the HW, rotations do not contribute to uij because they are antisymmetric.
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• So we have two 3×3 tensors: the stress tensor σij related to the forces, and the strain

tensor uij related to the displacements. For a small displacements, Hooke’s law linearly

relates forces to displacement, as in the case of a spring. More generally, it linearly relates

σij and uij :

u =
1

3αβ
[3ασ − (α− β)1(trσ)] ↔ σ =

(α− β)

3α
(trσ)1+ βu.

Here α = 3MB and β = 2SM where BM is the bulk modulus, and SM is the shear

modulus. The bulk modulus arises as dp = −BMdV/V for the case of pressure only, so

σij = −pδij and then uij = eδij so e = −p/α = 1

3
dV/V . The shear modulus arises when

tru = 0 and then σ = βu. Young’s modulus is YM= 3αβ/(2α+ β).
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• The EOM for the displacement "u is ρ∂2ui

∂t2
= ρgi + ∂jσij . Using Hooke’s law gives

Navier’s equation for "u: get ∂jσij = (BM + 1

3
SM)∇i(∇ · "u) + SM ∇2ui and thus

ρ
∂2"u

∂t2
= ρ"g + (BM +

1

3
SM)∇(∇ · "u) + SM ∇

2"u.

For longitudinal displacements e.g. "u = (ux(x, t), 0, 0), neglecting the "g term, this gives

a wave equation with clong =
√

(BM + 4

3
SM)/ρ. For transverse displacements, e.g. "u =

(0, uy(x, t), 0), this gives a wave equation with ctrans =
√

SM/ρ. Note that clong > ctrans;

gives a way to determine how far away the earthquake was.
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