3/13/20 Lecture outline
\star Reading: Taylor chapter 16.1 to 16.11

- Last time: recall pressure: in a static, ideal fluid, the surface force $d \vec{F}$ on any area element $d \vec{A}$ is $d \vec{F}=-p d \vec{A}$. More generally, the area element $d \vec{A}$ can have forces $d F^{i}=\sum_{j=1}^{3} \sigma^{i j} d A^{j}$ where $\sigma^{i j}$ is called the stress tensor and, for the case of a static, ideal fluid $\sigma^{i j}=-p \delta^{i j}$.

Idea fluid $\sigma=\left(\begin{array}{ccc}-p & 0 & 0 \\ 0 & -p & 0 \\ 0 & 0 & -p\end{array}\right)$
more generally, off diagonal
components of $\sigma \rightarrow$ shear forces egg.

- If we consider a tiny square in the (12) plane then it would have torque around the 3 axis $\sim\left(\sigma^{12}-\sigma^{21}\right)$ but if we scale the lengths to zero the angular momentum scales to zero more rapidly than this torque, which proves that $\sigma^{i j}=\sigma^{j i}$. The $\sigma^{i j}$ stress tensor components are the space components of the stress-energy tensor $T^{\mu \nu}$ that we discussed in relativity: $T^{i j}=-\sigma^{i j}$. Indeed, $c P^{i}=\int_{V} d^{3} x T^{i 0}$ and then $\frac{d P^{i}}{d t}=\int d^{3} x \partial_{0} T^{i 0}=$ $-\int d^{3} x \partial_{j} T^{i j}=\int d A_{j} \sigma^{i j}$ where we used $\partial_{\mu} T^{\mu \nu}=0$ and Gauss' law for integrating a divergence. The result fits with $d F^{i}=\sigma^{i j} d A^{j}$. For a closed surface $\partial d V$ that is the boundary of $d V$, get $d F^{i}=\partial_{j} \sigma^{i j} d V$; for the case of an ideal static fluid this becomes $d \vec{F}=-\nabla p d V$.

- Consider displacements in a solid from equilibrium: $\vec{u}(t, \vec{x})=\vec{x}^{\prime}-\vec{x}$, where \vec{x}^{\prime} is the deformed position. The \vec{u} is the analog of our displacement $y(x, t)$ in the case of a string. We can picture a bunch of coupled oscillators, and $\vec{u}(t, \vec{x})$ encodes their displacement from equilibrium. We expect to get a linear wave equation for \vec{u} in the simplest cases, with small displacements from equilibrium.

- The \vec{u} lead to a 3×3 symmetric tensor called the strain tensor. One way to see it is to note that the deformation leads to $d \ell^{\prime 2}=d \vec{x}^{\prime 2}=(d \vec{x}+d \vec{u})^{2}=d \ell^{2}+2 u_{i j} d x_{i} d x_{j}$, where $u_{i j} \equiv \frac{1}{2}\left(\partial_{i} u_{j}+\partial_{j} u_{i}+\partial_{i} u_{k} \partial_{j} u_{k}\right) \approx \frac{1}{2}\left(\partial_{i} u_{j}+\partial_{j} u_{i}\right)$, where the last term is dropped because displacements are usually small. $u_{i j}$ is called the strain tensor. The book calls it \mathbf{E}. As you checked in the HW, rotations do not contribute to $u_{i j}$ because they are antisymmetric

$$
\vec{u}=\vec{x}^{\prime}-\vec{x} \xrightarrow{\rightarrow}\left(d \vec{x}^{\prime}\right)^{2}=(d \vec{x}+d \vec{u})^{2}
$$

$$
\equiv d \vec{x}^{2}+2 u_{i j} d x_{i} d x_{j}
$$

$$
u_{i j} \approx \frac{1}{2}\left(\partial_{i} u_{j}+\partial_{j} u_{i}\right)=u_{j i}
$$

For a rotation $x^{\prime i}=R_{j}^{i} x^{j}$ get $u_{i j}=0$, good: rotation \neq strain.
e.g. $\quad d u^{i}=e d r^{i} \rightarrow u_{i j}=e \delta_{i j}$
stretches lengths by $e, \frac{d V}{V}=3 e$.
Or

shear

- So we have two 3×3 tensors: the stress tensor $\sigma_{i j}$ related to the forces, and the strain tensor $u_{i j}$ related to the displacements. For a small displacements, Hooke's law linearly relates forces to displacement, as in the case of a spring. More generally, it linearly relates $\sigma_{i j}$ and $u_{i j}$:

$$
\mathbf{u}=\frac{1}{3 \alpha \beta}[3 \alpha \sigma-(\alpha-\beta) \mathbf{1}(\operatorname{tr} \sigma)] \quad \leftrightarrow \quad \sigma=\frac{(\alpha-\beta)}{3 \alpha}(\operatorname{tr} \sigma) \mathbf{1}+\beta \mathbf{u} .
$$

Here $\alpha=3 M B$ and $\beta=2 S M$ where $B M$ is the bulk modulus, and SM is the shear modulus. The bulk modulus arises as $d p=-B M d V / V$ for the case of pressure only, so $\sigma_{i j}=-p \delta_{i j}$ and then $u_{i j}=e \delta_{i j}$ so $e=-p / \alpha=\frac{1}{3} d V / V$. The shear modulus arises when $\operatorname{tr} u=0$ and then $\sigma=\beta u$. Young's modulus is $\mathrm{YM}=3 \alpha \beta /(2 \alpha+\beta)$.

- The EOM for the displacement \vec{u} is $\rho \frac{\partial^{2} u^{i}}{\partial t^{2}}=\rho g^{i}+\partial_{j} \sigma^{i j}$. Using Hooke's law gives Navier's equation for \vec{u} : get $\partial_{j} \sigma^{i j}=\left(B M+\frac{1}{3} S M\right) \nabla^{i}(\nabla \cdot \vec{u})+S M \nabla^{2} u^{i}$ and thus

$$
\rho \frac{\partial^{2} \vec{u}}{\partial t^{2}}=\rho \vec{g}+\left(B M+\frac{1}{3} S M\right) \nabla(\nabla \cdot \vec{u})+S M \nabla^{2} \vec{u} .
$$

For longitudinal displacements e.g. $\vec{u}=\left(u_{x}(x, t), 0,0\right)$, neglecting the \vec{g} term, this gives a wave equation with $c_{l o n g}=\sqrt{\left(B M+\frac{4}{3} S M\right) / \rho}$. For transverse displacements, e.g. $\vec{u}=$ $\left(0, u_{y}(x, t), 0\right)$, this gives a wave equation with $c_{\text {trans }}=\sqrt{S M / \rho}$. Note that $c_{\text {long }}>c_{\text {trans }} ;$ gives a way to determine how far away the earthquake was.

