
1/10/20 Lecture outline

⋆ Reading: Taylor sections 13.1, 13.2, 13.3 , Chapter 8.

• Just for fun - some history: Copernican heliocentric theory with planets orbiting

the sun 1543; controversial and defended by Galileo, 1633 trial. Tycho Brahe (1546-1601)

took better data, and hired Kepler in 1600 as his assistant to help and to interpret the

data. Found that circular orbits do not work; epicycles. Kepler’s laws 1609-1619: (1) the

planet’s orbits are ellipses, with the sun at one of the two foci; (2) a line segment joining

a planet to the sun sweeps out equal areas in equal times; (3) the square of the orbital

period is directly proportional to the cube of the semi-major axis of the orbit, τ2 ∼ a3.

The actual earth-sun distance was obtained (to 7% error) in 1672 by Giovanni Cassini by

using parallax (to obtain the earth-mars distance). In 1672, this was used to determine

the constancy of the speed of light by astronomer Olaf Roemer. In 1687 Newton showed

how these follow from his universal law of gravitation and ~F = m~a and calculus.

• Last time: we reduced the 2-body motion problem → central force motion → an

equivalent 1d problem with L = 1
2µṙ

2 − Ueff (r) with Ueff ≡ ℓ2

2µr2 + U(r). The conserved

(CM) angular momentum is ℓẑ with ℓ = µr2φ̇ and the conserved energy is H = E =
1
2µṙ

2 + Ueff (r). We can then solve for the motion φ(t) and r(t) by integration:

φ(t) = φ0 +

∫ t

0

dt′ℓ/µr2(t′), t =

∫ r

r0

dr
√

2
µ
(E − U(r)− ℓ2

2µr2
)
.

which can be inverted to find r(t). We thus have obtained r(t) and φ(t).

Our main example: U(r) = −Gm1m2/r. Ueff (r) = −Gm1m2

r
+ ℓ2

2µr2
. Illustrate turning

points rmin and rmax for case E < 0: bounded orbit. For E > 0, there is a rmin but

no rmax: unbounded orbit. Circular orbit at points r = r0, where U ′

eff (r0) = 0, if

E = Ueff (r0). Stable if U ′′(r0) > 0.

• Conservation of angular momentum → equal areas swept out in equal times: the

area element is dA = 1
2r

2dφ (compared with dA = rdrdφ, we have done the
∫ r(φ)

0
rdr). So

Ȧ = 1
2
r2φ̇ = ℓ/2µ is a constant (Kepler’s 2nd law). We can integrate this over a period τ

for closed orbits: the orbit area is A = ℓτ/2µ.

• Mechanical similarity. Suppose that all lengths are rescaled: ~ri → α~ri. Suppose

that the potential energy is homogenous function of degree n, i.e. U(α~ri) = αnU(~ri).

Examples: for U = k/r, we have n = −1; for U = 1
2
kr2 we have n = 2. Suppose that

we also scale time as t → βt. Then velocities scale as ~v → α
β~v, and kinetic energy scales
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as T → α2

β2T . Assuming that the potential scales homogeneously, the lagrangian also

scales homogeneously if we take α2/β2 = αn, i.e. β = α1−
1
2
n. Since the scale is just an

overall factor, the equations of motion are unchanged. This is interesting: it implies that

homogeneous potentials have similar solutions, differing only by rescalings, with properties

simply related. Let a be a length scale in a solution, and a′ be a length scale in the rescaled

solution, with a′/a = α. We then have

t′

t
= α1−

1
2n,

v′

v
= α

1
2n,

E′

E
= αn, ~L′ = ~Lα1+

1
2n.

For example, for U = −k/r, n = −1, and we immediately obtain that the period scales

with the orbit size as τ ∼ a1−
1
2n = a3/2. Recall also the viral theorem (HW exercise):

2〈T 〉 = n〈U〉.

Taking E = T + U a constant, we have E = 〈T 〉+ 〈U〉 = (1 + 1
2
n)〈U〉 = (1 + 2

n
)〈T 〉.

In particular, for bounded orbits in a 1/r potential we have 〈U〉 = 2E, 〈T 〉 = −E.

• Orbit equations have solution r = r(t) and φ = φ(t). Let’s study the shape of the

trajectory rather than the t dependence. Eliminating the parameter t, we can solve for

r = r(φ). To do this, use

d

dt
= φ̇

d

dφ
=

ℓ

µr2
d

dφ
=

ℓu2

µ

d

dφ
,

where u = 1/r is introduced for convenience. So

dr

dt
= −

ℓ

µ

du

dφ
,

d2r

dt2
= −

ℓ2u2

µ2

d2u

dφ2
,

and the r EOM becomes (with F (r) = −dU/dr)

u′′(φ) + u+
µ

ℓ2u2
F (r) = 0.

Another option is to solve for r(φ) by using energy conservation at the outset. As

usual, this is better because F = ma gives a 2nd order differential equation, whereas

energy conservation does one of those integrals for us, leaving just a first order equation

remaining to integrate. Using the relation (see above) d
dt

= ℓ
µr2

d
dφ

, we get

dr

dt
=

ℓ

µr2
dr

dφ
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and substituting into energy conservation then gives

E = 1
2
µ

(

ℓ

µr2
dr

dφ

)2

+ Ueff (r),

which we can use to solve for dr/dφ, and then integrate the equation to obtain

φ− φ0 =

∫ r

r0

ℓdr/r2
√

2µ(E − Ueff (r))

• Kepler orbits: U(r) = −k/r, so F (r) = −k/r2. (Sign is chosen so that k > 0

corresponds to an attractive force). Get

u′′(φ) = −u(φ) + kµ/ℓ2,

which is like the free particle, if we substitute w = u− kµ/ℓ2, so

r(φ) =
c

1 + ǫ cosφ
, c ≡

ℓ2

kµ
. (1)

where ǫ is a constant, which can be written in terms of the energy as

ǫ =

√

1 +
2Eℓ2

µk2
.

So ǫ < 1 gives bounded orbits, and ǫ > 1 gives unbounded orbits. For ǫ < 1 the

equation is an ellipse (with special case being a circle for ǫ = 0). For ǫ > 1 it is a

hyperbola. For ǫ = 1 it is a parabola.

3


