
1/24/20 Lecture outline

⋆ Reading: Taylor Chapter 9, Sections 10.1, 10.2

• Last time: free fall near earth’s surface (we omit writing the prime on ~r′)

m
d2~r

dt2
= m~g + 2m~̇r × ~Ω, ~g = ~g0 + (~Ω× ~r)× ~Ω

where ~g is the observed free-fall acceleration, which includes the centrifugal force term.

Note that Ω2
earthRearth ≈ 3.38× 10−2ms−2 is about a 0.3% correction to g. Take ~r ≈ ~R

in ~Fcf , which is a vector from the center of the earth to the position on the earth’s surface

where the experiment is done. Choose local coordinates near that location (assumed to be

in the Northern hemisphere) such that ẑ′ points up (really it’s r̂) ŷ′ points North (it’s really

−θ̂), and x̂′ points East (it’s really φ̂). In this coordinate system ~Ω = (0,Ω sin θ,Ωcos θ).

This gives

d2x

dt2
= 2Ω(ẏ cos θ − ż sin θ),

d2y

dt2
= −2Ωẋ cos θ,

d2z

dt2
= −g + 2Ωẋ sin θ.

Solve this order-by-order in Ω ≪ 1. The zero-th order solution is x(0) = 0, y(0) = 0,

z(0) = h − 1
2gt

2. Plug these into the RHS of the above equation and then solve for the

next order; leads to x(1) = 1
3
Ωgt3 sin θ. So the object falls to x > 0 i.e to the East.

• Coriolis force leads to swirling cyclone air rotation around a low-pressure region,

with the rotation vector pointing up in the Northern hemisphere (and down in Southern).

• Foucault Pendulum of length L. The EOM for the mass m bob is

m
d2~r

dt2
= ~T +m~g + 2m~̇r × ~Ω, ~g = ~g0 + (~Ω× ~r)× ~Ω.

Take the coordinate system as above, e.g. ~Ω = Ω(cos θr̂ − sin θθ̂) → Ω(0, sin θ, cos θ) and

for small displacements (x, y) ≪ L get z ∼ (x2 + y2)/L ≈ 0 and T = mg and then

d2

dt2
(x, y) ≈ (−

Tx

mL
+ 2Ω cos θẏ − 2Ωż sin θ,−

Ty

mL
− 2Ω cos θẋ) →

d2x

dt2
≈ −ω2

ox+ 2ẏΩz,
d2y

dt2
= −ω2

0y − 2ẋΩz, ω0 ≡
√

g/L, Ωz ≡ Ωcos θ.

Let η(t) ≡ x(t)+ iy(t) and then the EOM becomes d2η
dt2

= −ω2
0η−2iΩz η̇. The solutions are

η = C1e
−iα+t + C2e

−iα
−
t where α± = Ωz ±

√

Ω2
z + ω2

0 are the roots of the characteristic

equation and, since Ω ≪ ω0, we can approximate α± ≈ Ωz ± ω0. Take initial conditions
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x0 = A and y0 = 0. Then the solution is η(t) = Ae−iΩzt cosω0t. At the North pole,

it rotates through 360◦ in a day, which makes sense from the perspective of an inertial

observer who sees the earth rotating and the pendulum staying in a plane (and it’s opposite

in the Southern hemisphere). For latitude around 42◦, Ωz ≈ 2
3
Ω ∼ 240◦/day.

• Next topic (Section 10.1): the center of mass and rotation. Consider a collection of

masses ma, or a mass distribution ρ(~r). The total mass is M =
∑

a ma =
∫

dV ρ(~r), where

we use either a sum or an integral as appropriate, and we can convert between them via e.g.

ρ(~r) =
∑

a maδ
3(~r−~ra(t)). The total momentum is ~P =

∑

a ma~̇ra(t) =
∫

dV ρ(~r)d~r
dt
. Write

~P = M ~̇R where ~R is the center of mass (or center of momentum) position ~R ≡ 1
M

∑

a ma~ra

or ~R = 1
M

∫

~rdm, where dm ≡ ρ(~r)dV . Using Newton’s law, ~Fext = M d2 ~R
dt2

.

Now take ~ra = ~R + ~r′a. Here ~ra is taken to be a vector in an inertial reference frame

with a fixed origin. The angular momentum relative to that origin is ~L =
∑

a ~ra×ma~̇ra =

~R× ~P+
∑

a ~r
′
a×ma~̇ra

′

, where two terms drop out thanks to
∑

a ma~r
′
a = 0 and its derivative.

This shows that the total angular momentum is that of the CM plus that relative to the

CM. Now d
dt
~R × ~P = ~R × ~̇P = ~R × ~F ext = ~Γext, the external torque acting on the CM.

Likewise d
dt

∑

a ~r
′
a×~pa =

∑

a ~r
′
a×

~F ext
a = ~Γext|CM , the external torque relative to the CM.

The total kinetic energy is T =
∑

a
1
2ma~̇ra

2
= 1

2M
~̇R
2

+ 1
2

∑

a ma~̇ra
′2.

• For rotation around a fixed axis, we replace ~̇ra = ~ω×~ra. Then Trot =
1
2

∑

ama~̇ra
′2 =

1
2

∑

a ma(ω
2r′a

2−(~ω·~r′a)
2) = 1

2Ijkωjωk where Ijk ≡
∑

a ma(~r
2
aδjk−rjrk) = Ikj (so I = IT ).

• The moment of inertia tensor Ijk also enters in Lrot
j =

∑

k Ijkωk, where ~Lrot is the

CM rotational angular momentum: ~Lrot =
∑

a ~r
′
a×ma(~ω×~r′a) =

∑

ama(~ωr
′
a
2−~r′a(~ω ·~r

′
a)).

E.g. take ~ω = ωẑ, then ~va = ω × ~ra = −ωyax̂ + ωxaŷ and ℓa = ma~ra × ~va =

maω(−zaxax̂−zayaŷ+(x2
a+y2a)ẑ). The CM angular momentum thus has ~Lz = Izzω where

Izz ≡
∑

amaρ
2
a, where ρ2a = x2

a + y2a is the distance of the point to the axis of rotation.

The products of inertia enter in e.g. Lx = Ixzω and Ly = Iyzω, with Ixz = −
∑

a maxaza

and Iyz = −
∑

a mayaza.

• Example: consider a wheel of radius R that is rolling without slipping with velocity

~V = V x̂. The center of the wheel has y = R, and we then find ω = −ωẑ with ω = V/R.

The velocity of a point on the wheel is ~v = ωRx̂+R~ω× r̂, where r̂ points from the center

of the wheel. For example, for the point of contact r̂ = −ŷ and ~v = 0, and for the top of

the wheel ~v = 2ωRx̂. A solid wheel has Lz = Izzω, with Izz =
∫

dmρ2 = 1
2MR2.

• Parallel axis theorem: replace ~ra → ~r′a = ~ra − ~d (with
∑

ama~ra = 0) for moment of

inertia tensor for rotations about an axis displaced to ~d. Get Ijk(~d) = Ijk(0)+M(~d2δjk −

djdk). For example, for a solid wheel around a point on the rim this gives Izz = 3
2MR2.
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