
1/27/20 Lecture outline

⋆ Reading: Sections 10.1, 10.2, 10.3, 10.4

• Last time: the center of mass and rotation. Consider a collection of masses ma,

or a mass distribution ρ(~r). The total mass is M =
∑

a ma =
∫
dV ρ(~r), where we use

either a sum or an integral as appropriate, and we can convert between them via e.g.

ρ(~r) =
∑

a maδ
3(~r−~ra(t)). The total momentum is ~P =

∑
a ma~̇ra(t) =

∫
dV ρ(~r)d~r

dt
. Write

~P = M ~̇R where ~R is the center of mass (or center of momentum) position ~R ≡ 1

M

∑
a ma~ra

or ~R = 1

M

∫
~rdm, where dm ≡ ρ(~r)dV . Using Newton’s law, ~Fext = ~̇P = M d2 ~R

dt2 . If

~Fext = 0, then the CM will move at constant velocity; we saw this in the two-body central

force section where ~Fext = 0 and we took ~R = 0. Now define ~r′a by ~ra = ~R + ~r′a. Here

~ra is taken to be a vector in an inertial reference frame with a fixed origin, and ~r′a is the

position relative to an origin at the CM. Note that
∑

a ma~r
′
a = 0.

• The angular momentum relative to the fixed origin is ~L =
∑

a ~ra×ma~̇ra = ~R× ~P +
∑

a ~r
′
a×ma~̇ra

′
, where two terms drop out thanks to

∑
a ma~r

′
a = 0 and its derivative. This

shows that the total angular momentum is that of the CM plus that relative to the CM.

Now d
dt
~R× ~P = ~R× ~̇P = ~R× ~F ext = ~Γext, the external torque acting on the CM. Likewise

d
dt

∑
a ~r

′
a × ~pa =

∑
a ~r

′
a ×

~F ext
a = ~Γext|CM , the external torque relative to the CM.

The total kinetic energy is T =
∑

a
1

2
ma~̇ra

2

= 1

2
M ~̇R

2

+ 1

2

∑
a ma~̇ra

′
2.

• For rotation around a fixed axis, we replace ~̇ra = ~ω×~ra. Then Trot =
1

2

∑
ama~̇ra

′
2 =

1

2

∑
a ma(ω

2r′a
2−(~ω·~r′a)

2) = 1

2
Ijkωjωk where Ijk ≡

∑
a ma(~r

2

aδjk−rjrk) = Ikj (so I = IT ).

• The moment of inertia tensor Ijk also enters in Lrot
j =

∑
k Ijkωk, where ~Lrot is the

CM rotational angular momentum: ~Lrot =
∑

a ~r
′
a×ma(~ω×~r′a) =

∑
ama(~ωr

′
a
2−~r′a(~ω ·~r

′
a)).

E.g. take ~ω = ωẑ, then ~va = ω × ~ra = −ωyax̂ + ωxaŷ and ℓa = ma~ra × ~va =

maω(−zaxax̂−zayaŷ+(x2

a+y2a)ẑ). The CM angular momentum thus has ~Lz = Izzω where

Izz ≡
∑

amaρ
2

a, where ρ2a = x2

a + y2a is the distance of the point to the axis of rotation.

The products of inertia enter in e.g. Lx = Ixzω and Ly = Iyzω, with Ixz = −
∑

a maxaza

and Iyz = −
∑

a mayaza.

• Example: consider a wheel of radius R that is rolling without slipping with velocity

~V = V x̂. The center of the wheel has y = R, and we then find ω = −ωẑ with ω = V/R.

The velocity of a point on the wheel is ~v = ωRx̂+R~ω× r̂, where r̂ points from the center

of the wheel. For example, for the point of contact r̂ = −ŷ and ~v = 0, and for the top of

the wheel ~v = 2ωRx̂. A solid wheel has Lz = Izzω, with Izz =
∫
dmρ2 = 1

2
MR2.

1



• Example: for a cube of side length a rotating around its center (so
∫
dm →

M
a3

∫ a/2

−a/2
dx

∫ a/2

−a/2
dy

∫ a/2

−a/2
dz), get Ijk = 1

6
Ma2δjk. If the cube is instead rotating

around its corner (so the integrals are all
∫ a

0
instead of

∫ a/2

−a/2
), can compute to get

Ijk = 1

6
Ma2δjk + 1

4
Ma2(3δij − 1).

ended here

• Parallel axis theorem: replace ~ra → ~r′a = ~ra − ~d (with
∑

ama~ra = 0) for moment of

inertia tensor for rotations about an axis displaced to ~d. Get Ijk(~d) = Ijk(0)+M(~d2δjk −

djdk). For example, for a solid wheel around a point on the rim this gives Izz = 3

2
MR2.

If the cube is instead rotating around a corner, take ~d = 1

2
a(1, 1, 1) and then get

Ijk = 1

6
Ma2δjk + 1

4
Ma2(3δij − 1).

• The eigenvectors ω of the inertia tensor are called the principal axes, and the eigen-

values λ are called the principal moments: ~L = λ~ω. We can find three orthogonal eigen-

vectors ~ωi=1,2,3 and write I in this basis as a diagonal matrix with the three eigenvalues

λi=1,2,3 along the diagonal. For example, for a cube rotating around a corner, one of the

principle axes is along the diagonal, so ~ω1 = ω 1√
3
(1, 1, 1), which has principle moment

eigenvalue λ1 = Ma2/6. The other two principle axes are perpendicular and here, because

of the symmetry, they have the same eigenvalue, λ2 = λ3. The original I must have trace

equal to λ1 + λ2 + λ3 and determinant equal to λ1λ2λ3 (since the diagonalized matrix of

eigenvalues differs by a similarity transform I → R−1IR and the trace and determinant

are invariant under that. Indeed, find λ2 = λ3 = 11

12
Ma2.

• We saw in the previous chapter that, for any vector ~̇Q|space = ~̇Q|body + ~ω × ~Q

where “space” refers to an inertial frame that is fixed in the lab, and “body” refers to a

non-inertial frame that is fixed on the rotating body. Apply this to the case of angular

momentum to get Euler’s equation:

d~L

dt
|space = ~Γext =

d~L

dt
|body + ~ω × ~L.

Use this and Lj = Ijkωk to determine the dynamical rotation ~ω(t) of the body.
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