\star Reading: Sections 10.1, 10.2, 10.3, 10.4

- Last time: the center of mass and rotation. Consider a collection of masses m_{a}, or a mass distribution $\rho(\vec{r})$. The total mass is $M=\sum_{a} m_{a}=\int d V \rho(\vec{r})$, where we use either a sum or an integral as appropriate, and we can convert between them via e.g. $\rho(\vec{r})=\sum_{a} m_{a} \delta^{3}\left(\vec{r}-\vec{r}_{a}(t)\right)$. The total momentum is $\vec{P}=\sum_{a} m_{a} \dot{\vec{r}}_{a}(t)=\int d V \rho(\vec{r}) \frac{d \vec{r}}{d t}$. Write $\vec{P}=M \dot{\vec{R}}$ where \vec{R} is the center of mass (or center of momentum) position $\vec{R} \equiv \frac{1}{M} \sum_{a} m_{a} \vec{r}_{a}$ or $\vec{R}=\frac{1}{M} \int \vec{r} d m$, where $d m \equiv \rho(\vec{r}) d V$. Using Newton's law, $\vec{F}_{\text {ext }}=\vec{P}=M \frac{d^{2} \vec{R}}{d t^{2}}$. If $\vec{F}_{\text {ext }}=0$, then the CM will move at constant velocity; we saw this in the two-body central force section where $\vec{F}_{e x t}=0$ and we took $\vec{R}=0$. Now define \vec{r}_{a}^{\prime} by $\vec{r}_{a}=\vec{R}+\vec{r}_{a}^{\prime}$. Here \vec{r}_{a} is taken to be a vector in an inertial reference frame with a fixed origin, and \vec{r}_{a}^{\prime} is the position relative to an origin at the CM. Note that $\sum_{a} m_{a} \vec{r}_{a}^{\prime}=0$.
- The angular momentum relative to the fixed origin is $\vec{L}=\sum_{a} \vec{r}_{a} \times m_{a} \dot{\vec{r}}_{a}=\vec{R} \times \vec{P}+$ $\sum_{a}{\vec{r}_{a}}^{\prime} \times m_{a} \dot{\vec{r}}_{a}^{\prime}$, where two terms drop out thanks to $\sum_{a} m_{a} \vec{r}_{a}^{\prime}=0$ and its derivative. This shows that the total angular momentum is that of the CM plus that relative to the CM. Now $\frac{d}{d t} \vec{R} \times \vec{P}=\vec{R} \times \dot{\vec{P}}=\vec{R} \times \vec{F}^{\text {ext }}=\vec{\Gamma}^{\text {ext }}$, the external torque acting on the CM. Likewise $\frac{d}{d t} \sum_{a} \vec{r}_{a}^{\prime} \times \vec{p}_{a}=\sum_{a} \vec{r}_{a}^{\prime} \times \vec{F}_{a}^{e x t}=\left.\vec{\Gamma}^{e x t}\right|_{C M}$, the external torque relative to the CM.

The total kinetic energy is $T=\sum_{a} \frac{1}{2} m_{a} \dot{\vec{r}}_{a}{ }^{2}=\frac{1}{2} M \dot{\vec{R}}{ }^{2}+\frac{1}{2} \sum_{a} m_{a} \dot{\vec{r}}_{a}{ }^{\prime}$.

- For rotation around a fixed axis, we replace $\dot{\overrightarrow{r_{r}}}=\vec{\omega} \times \vec{r}_{a}$. Then $T_{r o t}=\frac{1}{2} \sum_{a} m_{a} \dot{\vec{r}}_{a}{ }^{2}=$ $\frac{1}{2} \sum_{a} m_{a}\left(\omega^{2} r_{a}^{\prime 2}-\left(\vec{\omega} \cdot \vec{r}_{a}^{\prime}\right)^{2}\right)=\frac{1}{2} I_{j k} \omega_{j} \omega_{k}$ where $I_{j k} \equiv \sum_{a} m_{a}\left(\vec{r}_{a}^{2} \delta_{j k}-r_{j} r_{k}\right)=I_{k j}\left(\right.$ so $\left.I=I^{T}\right)$.
- The moment of inertia tensor $I_{j k}$ also enters in $L_{j}^{\text {rot }}=\sum_{k} I_{j k} \omega_{k}$, where $\vec{L}^{\text {rot }}$ is the CM rotational angular momentum: $\vec{L}^{r o t}=\sum_{a} \vec{r}_{a}^{\prime} \times m_{a}\left(\vec{\omega} \times \vec{r}_{a}^{\prime}\right)=\sum_{a} m_{a}\left(\vec{\omega} r_{a}^{\prime 2}-\vec{r}_{a}^{\prime}\left(\vec{\omega} \cdot \vec{r}_{a}^{\prime}\right)\right)$.
E.g. take $\vec{\omega}=\omega \hat{z}$, then $\vec{v}_{a}=\omega \times \vec{r}_{a}=-\omega y_{a} \hat{x}+\omega x_{a} \hat{y}$ and $\ell_{a}=m_{a} \vec{r}_{a} \times \vec{v}_{a}=$ $m_{a} \omega\left(-z_{a} x_{a} \hat{x}-z_{a} y_{a} \hat{y}+\left(x_{a}^{2}+y_{a}^{2}\right) \hat{z}\right)$. The CM angular momentum thus has $\vec{L}_{z}=I_{z z} \omega$ where $I_{z z} \equiv \sum_{a} m_{a} \rho_{a}^{2}$, where $\rho_{a}^{2}=x_{a}^{2}+y_{a}^{2}$ is the distance of the point to the axis of rotation. The products of inertia enter in e.g. $L_{x}=I_{x z} \omega$ and $L_{y}=I_{y z} \omega$, with $I_{x z}=-\sum_{a} m_{a} x_{a} z_{a}$ and $I_{y z}=-\sum_{a} m_{a} y_{a} z_{a}$.
- Example: consider a wheel of radius R that is rolling without slipping with velocity $\vec{V}=V \hat{x}$. The center of the wheel has $y=R$, and we then find $\omega=-\omega \hat{z}$ with $\omega=V / R$. The velocity of a point on the wheel is $\vec{v}=\omega R \hat{x}+R \vec{\omega} \times \hat{r}$, where \hat{r} points from the center of the wheel. For example, for the point of contact $\hat{r}=-\hat{y}$ and $\vec{v}=0$, and for the top of the wheel $\vec{v}=2 \omega R \hat{x}$. A solid wheel has $L_{z}=I_{z z} \omega$, with $I_{z z}=\int d m \rho^{2}=\frac{1}{2} M R^{2}$.
- Example: for a cube of side length a rotating around its center (so $\int d m \rightarrow$ $\left.\frac{M}{a^{3}} \int_{-a / 2}^{a / 2} d x \int_{-a / 2}^{a / 2} d y \int_{-a / 2}^{a / 2} d z\right)$, get $I_{j k}=\frac{1}{6} M a^{2} \delta_{j k}$. If the cube is instead rotating around its corner (so the integrals are all \int_{0}^{a} instead of $\int_{-a / 2}^{a / 2}$), can compute to get $I_{j k}=\frac{1}{6} M a^{2} \delta_{j k}+\frac{1}{4} M a^{2}\left(3 \delta_{i j}-1\right)$.

ended here

- Parallel axis theorem: replace $\vec{r}_{a} \rightarrow \vec{r}_{a}^{\prime}=\vec{r}_{a}-\vec{d}$ (with $\sum_{a} m_{a} \vec{r}_{a}=0$) for moment of inertia tensor for rotations about an axis displaced to \vec{d}. Get $I_{j k}(\vec{d})=I_{j k}(0)+M\left(\overrightarrow{d^{2}} \delta_{j k}-\right.$ $\left.d_{j} d_{k}\right)$. For example, for a solid wheel around a point on the rim this gives $I_{z z}=\frac{3}{2} M R^{2}$.

If the cube is instead rotating around a corner, take $\vec{d}=\frac{1}{2} a(1,1,1)$ and then get $I_{j k}=\frac{1}{6} M a^{2} \delta_{j k}+\frac{1}{4} M a^{2}\left(3 \delta_{i j}-1\right)$.

- The eigenvectors ω of the inertia tensor are called the principal axes, and the eigenvalues λ are called the principal moments: $\vec{L}=\lambda \vec{\omega}$. We can find three orthogonal eigenvectors $\vec{\omega}_{i=1,2,3}$ and write I in this basis as a diagonal matrix with the three eigenvalues $\lambda_{i=1,2,3}$ along the diagonal. For example, for a cube rotating around a corner, one of the principle axes is along the diagonal, so $\vec{\omega}_{1}=\omega \frac{1}{\sqrt{3}}(1,1,1)$, which has principle moment eigenvalue $\lambda_{1}=M a^{2} / 6$. The other two principle axes are perpendicular and here, because of the symmetry, they have the same eigenvalue, $\lambda_{2}=\lambda_{3}$. The original I must have trace equal to $\lambda_{1}+\lambda_{2}+\lambda_{3}$ and determinant equal to $\lambda_{1} \lambda_{2} \lambda_{3}$ (since the diagonalized matrix of eigenvalues differs by a similarity transform $I \rightarrow R^{-1} I R$ and the trace and determinant are invariant under that. Indeed, find $\lambda_{2}=\lambda_{3}=\frac{11}{12} M a^{2}$.
- We saw in the previous chapter that, for any vector $\left.\dot{\vec{Q}}\right|_{\text {space }}=\left.\dot{\vec{Q}}\right|_{\text {body }}+\vec{\omega} \times \vec{Q}$ where "space" refers to an inertial frame that is fixed in the lab, and "body" refers to a non-inertial frame that is fixed on the rotating body. Apply this to the case of angular momentum to get Euler's equation:

$$
\left.\frac{d \vec{L}}{d t}\right|_{\text {space }}=\vec{\Gamma}_{e x t}=\left.\frac{d \vec{L}}{d t}\right|_{b o d y}+\vec{\omega} \times \vec{L}
$$

Use this and $L_{j}=I_{j k} \omega_{k}$ to determine the dynamical rotation $\vec{\omega}(t)$ of the body.

