
1/5/21 Lecture outline

? Reading: Schwarz chapter 14 (Path integrals).

• Classical mechanics is usually taught by first introducing the Lagrangian description,

and then the Hamiltonian description. The Lagrangian description is usefully phrased in

terms of the principle of least action, but action itself is not a classical observable and

there is something mysterious about this path-dependent functional, which happens to

have the same units as h̄. A nice aspect of the principle of least action is that we do

not have to pick a time slicing, and the action exhibits the full symmetries, e.g. Lorentz

invariance and, in general relativity, the full general coordinate transformation invariance.

Of course the Hamiltonian description is also useful, with its emphasis on phase space,

Poisson brackets, canonical transformations, the Hamilton generating time translations

via Hamilton’s equations, seeing conserved charges, etc.

Quantum mechanics is usually taught first by quantizing the Hamiltonian descrip-

tion, replacing the phase space dynamical quantities with operators and replacing Poisson

brackets with equal time commutators (or anticommutators for Fermions). An alternative

description in terms of the principle of least action was developed by Feynman, with pre-

scient early hints in Dirac’s classic book on QM in the form of the equation ψ ∼ eiS/h̄.

Feynman came to this approach by intuitively thinking about double slit interference and

realizing that empty space can be thought of as being filled with screens that are full of

holes, so such interference and taking multiple paths is always there. The path integral

generalizes immediately from QM to QFT, and for different types of fields. Unlike canoni-

cal quantization, it makes Lorentz and Poincare symmetry manifest, and also gives a way

to define QFT beyond perturbation theory. The classical limit is clarified, as the station-

ary phase limit of an integral, much as with light rays in geometric optics; this also gives

a nice perspective on the WKB approximation. The path integral also helps to connect

QFT with statistical physics: the partition function Tre−βH can be considered as a path

integral with time t replaced with Euclidean time τ and compactified on a circle τ ∼ τ +β.

In canonical quantization, we compute expectation values of operators. In the path

integral description, there are no operators and time-ordering comes out automatically.

The path integral is great conceptually, but not used much in QM classes because of

the math. Least action only requires learning functional differentiation. Feynman’s path

integral is based on functional integration, and mathematicans had not yet developed that

much (it was partly developed by Norbert Wiener ∼ 1921 in the context of Brownian

motion; Wiener was a professor at MIT, and maybe Feynman heard about it there when
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he was an undergraduate). As we will see, for free fields the action is quadratic in the

fields, and the functional integrals are thus Gaussian and easy to evaluate, and then we

can add perturbations and re-obtain the Feynman rules for computing amplitudes.

• Recall canonical quantization for a scalar (for simplicity) field φ(x) in D spacetime

dimensions. The conjugate momentum is Π = ∂L/∂φ̇ and we promote them to operators

satisfying

[φ(t, ~x),Π(t, ~x′)] = ih̄δD−1(~x− ~x′).

Quantum mechanics is recovered for D = 1, and we’ll set h̄ = 1. The S-matrix elements,

used to compute scattering cross sections and lifetimes etc. are computed from an ampli-

tude 〈f |S|i〉 which is related to the vacuum expectation values of time-ordered products

of the fields. This is seen from Dyson’s formula or from the LSZ derivation:

〈f |i〉 = 〈k1′ . . . kn′ |k1 . . . kn〉

= in+n′
n′∏
j′=1

∫
d4x′je

ik′jx
′
j (∂2

j′ +m2)
n∏
j=1

e−ikjxj (∂2
j +m2)Gn+n′(x1 . . . xn, x1′ . . . xn′),

(1)

where G is called the Green’s function and defined by

Gn+n′(x1 . . . xn, x1′ . . . xn′) ≡ 〈0|Tφ(x1′) . . . φ(xn′)φ(x1) . . . φ(xn)|0〉. (2)

Using Wick’s theorem,

T (φ1 . . . φn) =: φ1 . . . φn : + : all contractions :,

gives Feynman’s rules for computing amplitudes, from Feynman diagrams.

• Let’s first introduce the path integral in QM (QFT in d = 1 + 0 spacetime dimen-

sions). The probability amplitude to go from φ at time t to φ′ at time t′ is

H〈φ′, t′|φ, t〉H = U(φ, φ′;T ) = 〈φ′|e−iHT/h̄|φ〉.

Satisfies SE ih̄∂TU = HU . Feynman:

U(φ, φ′;T ) =

∫
[dφ(t)]eiS[φ(t)]/h̄,

where the integral is over all possible paths with the prescribed boundary conditions at t

and t′. In QFT we will be interested in S-matrices where we can take the initial and final

times to ∓∞ so we don’t need to worry about imposing boundary conditions on the paths.
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The functional integral can be broken into time slices, as way to define it. E.g. free

particle (
−im
2πh̄ε

)N/2 ∫ N−1∏
i=1

dφi exp[
im

2h̄ε

N∑
i=1

(φi − φi−1)2]

Where we take ε → 0 and N → ∞, with Nε = T held fixed. Do integral in steps. Apply

expression for real gaussian integral (valid: analytic continuation):

∫ ∞
−∞

dφ exp(iaφ2/2) =

√
2πi

a
,

∫ ∞
−∞

dφ exp(i( 1
2aφ

2 − Jφ)) =

√
2πi

a
exp(−iJ2/2a).

where we analytically continued from the case of an ordinary gaussian integral. Think of

a as being complex. Then the integral converges for Im(a) > 0, since then it’s damped.

To justify the above, for real a, we need the integral to be slightly damped, not just purely

oscillating. To get this, take a→ a+ iε, with ε > 0, and then take ε→ 0+. We’ll see that

this is related to the iε in the Feynman propagator, which gave the T ordering.

After n− 1 steps, get integral:

(
2πih̄nε

m

)−1/2

exp[
m

2πih̄nε
(φn − φ0)2].

So the final answer is

U(xb, xa;T ) =

(
2πih̄T

m

)−1/2

exp[im(φ′ − φ)2/2h̄T ].

Note that the exponent is eiScl/h̄, where Scl is the classical action for the classical path with

these boundary conditions. (More generally, get a similar factor of eiScl/h̄ for interacting

theories, from evaluating path integral using stationary phase.) Consider the phase of Uas

a function of ∆φ = φ′ − φ, fixed T . For large ∆φ, nearly constant wavelength λ, and we

can recover p = h̄k, with p = ∂Scl/∂φ
′, and likewise can get E = h̄ω from E = −∂Scl/∂t′.

• Nice application: Aharonov-Bohm. Recall L = 1
2m~̇x

2
+ q~̇x · ~A − qφ. Solenoid with

B 6= 0 inside, and B = 0 outside. Phase difference in wavefunctions is

ei∆S/h̄ = eiq
∮
~A·d~x/h̄ = eiqΦ/h̄.

Aside on Dirac quantization for magnetic monopoles.
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• Can derive the path integral from standard QM formulae, with operators, by intro-

ducing the time slices and a complete set of q and p eigenstates at each step.

〈q′, t′|q, t〉 =

∫ ∫ N∏
j=1

dqj〈q′|e−iHδt|qN−1〉〈qN−1|e−iHδt|qN−2〉 . . . 〈q1|e−iHδt|q〉,

where we’ll take N → ∞ and δt → 0, holding t′ − t ≡ Nδt fixed. Note that even

though eA+B = eAeBe−
1
2 [A,B]+..., we’re not going to have to worry about this for δt→ 0:

e−iHδt = e−iδtp
2/2me−iδtV (q)eO(δt2). Now note

〈q2|e−iHδt|q1〉 =

∫
dp1〈q2|e−iδtp

2/2m|p1〉〈p1|e−iV (q)δt|q1〉,

=

∫
dp1e

−iH(p1,q1)δteip1(q2−q1).

This leads to the Legendre transformation from the Hamiltonian to the Lagrangian in the

exponent since

〈q′, t′|q, t〉 =

∫
[dq(t)][dp(t)] exp(i

∫ t′

t

dt(p(t)q̇(t)−H(p, q))),

and taking H quadratic in momentum and doing the p gaussian integral recovers the

Feynman path integral.

• The same derivation as above leads to e.g.

〈q4, t4|T q̂(t3)q̂(t2)|q1, t1〉 =

∫
[dq(t)]q(t3)q(t2)eiS/h̄,

where the integral is over all paths, with endpoints at (q1, t1) and (q4, t4).

A key point: the functional integral automatically accounts for time or-

dering! Note that the LHS above involves time ordered operators, while the RHS has a

functional integral, which does not involve operators (so there is no time ordering). The

fact that the time ordering comes out on the LHS is wonderful, since know that we’ll

need to have the time ordering for using Dyson’s formula, or the LSZ formula, to compute

quantum field theory amplitudes.
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