
1/7/21 Lecture outline

? Reading: Schwarz chapter 14 (Path integrals).

• Now introduce sources J(x) for the field φ(x) as a trick to get the time order

products from derivatives of a generating functional. Let’s record, for future use, the

needed gaussian integrals:

Z(Ji) ≡
N∏
i=1

∫
dφi exp(−Bijφiφi + J̃iφi) = πN/2(detB)−1/2 exp(B−1

ij J̃iJ̃j/4).

Evaluate via completing the square: the exponent is −(φ,Bφ) + (J̃ , φ) = −(φ′, Bφ′) +
1
4 (J̃ , B−1J̃), where φ′ = φ− 1

2B
−1J̃ . Again, we can similarly evaluate Gaussian integrals

with phases in the exponent by analytic continuation

Z(Ji) ≡
N∏
i=1

∫
dφi exp(

i

h̄
( 1

2Aijφiφi + Jiφi)) = (2πih̄)N/2(detA)−1/2 exp(−iA−1
ij JiJj/2h̄).

replacing B → −i( 1
2A+ iε)/h̄ and redefining J̃ → iJ/h̄ for later convenience.

• Consider e.g. QM with Hamiltonian H(q, p), modified by introducing a source

for q, H → H − J(t)q. (We could also add a source for p, but don’t bother doing so

here.) Consider moreover replacing H → H(1 − iε), with ε → 0+, which has the effect of

projecting on to the ground state at t→ ±∞. As mentioned, this’ll be related to the iε of

the Feynman propagator. Consider the vacuum-to vacuum amplitude in the presence of

the source,

〈0|0〉J =

∫
[dq] exp[i

∫
dt(L+ J(t)q)/h̄] ≡ Z[J(t)].

Once we compute Z[J(t)] we can use it to compute arbitrary time-ordered expectation

values. Indeed, Z[J ] is a generating functional1 for time ordered expectation values of

products of the q(t) operators:

〈0|
n∏
j=1

Tq(tj)|0〉 =

n∏
j=1

1

i

δ

δJ(tj)
Z[J ]

∣∣
J=0

,

where the time evolution e−iHt/h̄ is accounted for on the LHS by taking the operators

in the Heisnberg picture. We’ll be interested in such generating functionals, and their

generalization to quantum field theory (replacing t→ (t, ~x)).

1 Recall how functional derivatives work, e.g. δ
δJ(t)

J(t′) = δ(t− t′).
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• We’ll want to compute amplitudes like

〈0|
∏
i Tq(ti)|0〉J=0

〈0|0〉J=0

and for these the detA factor in the Gaussian integrals will cancel between the numerator

and the denominator. This is related to the cancellation of vacuum bubble diagrams.

• Let’s apply the above to compute the generating functional for the example of QM

harmonic oscillator (scaling m = 1),

Z[J(t)] =

∫
[dq(t)] exp(− i

h̄

∫
dt

[
1
2q(t)(

d2

dt2
+ ω2)q(t)− J(t)q(t)

]
).

This is analogous to the multi-dimenensional gaussian above, where i is replaced with the

continuous label t,
∑
i →

∫
dt etc. and the matrix Aij is replaced with the differential

operator A→ −( d
2

dt2 +ω2− iε), where the iε is to damp the gaussian, as mentioned above.

Doing the gaussian gives a factor of
√

detB which we don’t need to compute now because

it’ll cancel, and the exponent with the sources from completing the square, which is the

term we want, so

〈0|0〉J
〈0|0〉J=0

= “ exp[−i 1
2A
−1
ij JiJj/h̄]” = exp[− 1

2 h̄

∫
dtdt′J(t)G(t− t′)J(t′)],

with G(t) the Green’s function for the oscillator, (−∂2
t − ω2 + iε)G(t) = iδ(t),

G(t) =

∫ ∞
−∞

dE

2πh̄

i e−iEt/h̄

E2/h̄2 − ω2 + iε
=

1

2ω
e−iω|t|. (1)

The iε here does the same thing as in the Feynman propagator: the pole at E = h̄ω is

shifted below the axis and that at E = −h̄ω is shifted above. Equivalently, we can replace

E → E(1 + iε), to tilt the integration contour below the −ω pole and above the +ω pole.

Note then that e−iEt/h̄ → e−iEt/h̄eEtε/h̄, which projects on to the vacuum for t→∞ (the

iε projects on to the vacuum in the far future and also the far past).

For t > 0, the E contour is closed in the LHP and the residue is at E = h̄ω, while for

t < 0 the contour is closed in the UHP, with residue at E = −h̄ω.

• Now that we know the generating functional, we can use it to compute time ordered

expectation values via

〈0|T
n∏
i=1

φH(ti)|0〉/〈0|0〉 = Z−1
0

∫
[dφ]

n∏
i=1

φ(ti) exp(iS/h̄) = Z−1
0

n∏
i=1

h̄

i

δ

δJ(t)
|J=0.
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with Z0 =
∫

[dφ] exp(iS/h̄).

• The nice thing about the path integral is that it generalizes immediately to quantum

fields, and for that matter to all types (scalars, fermions, gauge fields). E.g.

〈φb(~x, T )|e−iHT |φa(~x, 0)〉 =

∫
[dφ]eiS/h̄ S =

∫
d4xL.

This is then used to compute Green’s functions:

〈Ω|T
n∏
i=1

φH(xi)|Ω〉 = Z−1
0

∫
[dφ]

n∏
i=1

φ(xi) exp(iS/h̄),

with Z0 =
∫

[dφ] exp(iS/h̄). Again, as noted above, the T ordering will be automatic.

• On to QFT and the Klein-Gordon theory,

Z0 =

∫
[dφ]eiS/h̄ S = 1

2

∫
d4xφ(x)(−∂2 −m2)φ(x),

where we integrated by parts and dropped a surface term. This is completely analogous

to our QM SHO example, simply replacing d2

dt2 + ω2 − iε there with ∂2 + m2 − iε here –

again, the iε is to make the oscillating gaussian integral slightly damped. I.e. we should

take S = 1
2

∫
d4xφ(x)(−∂2 − m2 + iε)φ(x), with ε > 0, and then ε → 0+. Note that

the operator is A ∼ −∂2 − m2 + iε, which in momentum space is p2 − m2 + iε. Looks

familiar: it’s the Feynman iε prescription, which you understood last quarter as needed to

give correct causal structure of greens functions, here comes simply from ensuring that the

integrals converge! This is why the path integral automatically gives the time ordering of

the products. So

Z0 = const(det(−∂2 −m2 + iε))−1/2.

As in the SHO QM example, we can compute field theory Green’s functions via the

generating functional

Z[J(x)] =

∫
[dφ] exp(i

∫
d4x[L+ J(x)φ(x)]).

This is a functional: input function J(x) and it outputs a number. Use it to compute

〈0|T
n∏
i=1

φ(xi)|0〉/〈0|0〉 = Z[J ]−1
n∏
j=1

(
−i δ

δJ(xi)

)
Z[J ]

∣∣
J=0

.
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E.g. for the KG example, A = (−∂2 −m2 + iε), so the generating functional is

Zfree[J ] = Z0[J ] = exp(− 1
2 h̄
−1

∫
d4xd4yJ(x)DF (x− y)J(y)), (2)

with (−∂2 −m2 + iε)DF (x− y) = iδ4(x− y),

DF (x− y) ≡
∫

d4k

(2π)4

ie−ik(x−y)

k2 −m2 + iε
.

Can use this generating function to compute free field time ordered products, it reproduces

Wick’s theorem, Feynman diagrams. I’ll discuss this soon, including interactions to make

it more interesting. For now note that 〈Tφ(x)φ(y)〉 = G(2)(x− y) = DF (x− y).

• It is often useful to consider QFT in Euclidean spacetime, and then rotate the

answers back to Minkowski space. Note that LE = −H and eiS/h̄ → e−
∫
dtEH/h̄, so the

Euclidean path integral gives a partition function – it is literally the partition function if

Euclidean time is compactified tE ∼ tE + h̄β with β = 1/kBT . Let’s discuss this in a bit

more detail, and we’ll return to it later – e.g. when we compute loop integrals. We want

to analytically continue all energies by +π/2 – this is called a Wick rotation. Thanks to

the pole placement in the propagators (the iε), this continuation does not cross any poles,

and now we integrate k0 up the imaginary axis. Now we define k0 = ik4 with k4 real, and

then k2 = −k2
E and d4k = id4kE . Our Fourier transforms have eikx and we don’t want

that to blow up, so we analytically continue all x0 by −π/2. Then we change variables

via x0 = −ix4 with x4 real, so d4x = −id4xE . We then see that the Wick rotation takes

S =
∫
d4xL → (−i)

∫
d4xE(−H) = i

∫
d4xEH, so eiS/h̄ → e−

∫
d4xEH which is copacetic

since the exponential is damped.

• Let’s now consider the path integral for a free, massive, Dirac Fermion. The func-

tional integral is over Grassmann valued fields. Consider a Grassmann coordinate θ. It

anticommutes with any other Grassmann coordinate, including itself, so it sqaures to

zero. Taylor expansions are thus simple, e.g. eaθ = 1 + aθ. The constraints on what

we want integration to satisfy (e.g. linearity) ends up requiring that
∫
dθ1 = 0 and∫

dθθ = 1, i.e. integration behaves the same as differentiation. We’ll be interested in

complex θ and θ∗ and then
∫
dθ∗dθ exp(−θ∗bθ) = b.

∏
i

∫
dθ∗i dθi exp(−θ∗iBijθj) = detB.∏

i

∫
dθ∗i dθi exp(−θ∗iBijθj)θkθ∗l = (B−1)kl detB.
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• We can introduce sources for the fields:

Z[η̄i, ηi] =

∫
dθ̄idθi exp(i(Aij θ̄iθj + η̄iθi + θ̄iηi])

=

∫
dθ̄idθi(1 + i(θ̄, Aθ))(1 + iη̄θ)(1 + iθ̄η),

= −i detA exp(−iη̄iA−1
ij ηj).

• Generalize to functional integrals over fermionic fields;

Z[η̄, η] =

∫
[dψ̄][dψ] exp(i

∫
d4x[ψ̄(i/∂ −m)ψ + η̄ψ + ψ̄η]

= Z0 exp[−
∫
d4xd4yη̄(x)SF (x− y)η(y).

where

SF [x− y] = i(i/∂ −m)−1 =

∫
d4k

(2π)4

ie−ik(x−y)

/k −m+ iε
.

Get e.g.

〈0|Tψ(x)ψ̄(y)|0〉 = Z−1
0 (−i δ

δη̄(x)
)(i

δ

δη(y)
)Z[η, η̄]|η,η̄=0 = SF (x− y).

We will see how this gives the Feynman rules for fermions that you saw last quarter.

The detB in the numerator instead of the denominator will be related to the fact that

every closed fermion loop gets an extra −1 factor. (This relative minus sign is put to good

use with supersymmetry!)

• Comments about functional integrals for gauge fields. Emphasize that gauge in-

variance is not really a symmetry: it is a redundancy in our description. Configurations

differing by gauge transformations are to be interpreted as the same physical state. This

shows up in the functional integral in that we should not even be integrating over gauge

equivalent configurations.

Recall gauge invariance, A = Aµdx
µ → Aα = A + dα(x), with ψi → e−iqiα(x)ψ.

Redundancy in description, can only observe gauge invariant quantities. Need to replace

∂µψi → Dµψi ≡ (∂µ + iqiAµ)ψi. Then Dα
µψ

α
i = e−iqiαDµψi transforms nicely, with just

an overall phase, and ψ̄iDµψi is gauge invariant. So the Dirac lagrangian, ψ̄(i /D −m)ψ is

gauge invariant. The terms linear in Aµ give L ⊃ −Aµjµ, with jµ the conserved current.

In the functional integral, will have
∫

[dA] exp(iS). Integration measure must be gauge

invariant, implies it gets a factor of gauge orbit volume. Would like to integrate only

over a slice of inequivalent gauge fields, without integrating over the gauge orbits. Need
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to do this, since otherwise there is no well defined B−1. Recall S =
∫
d4x[− 1

4F
2
µν ] =

1
2

∫
d4kAµ(x)(∂2gµν − ∂µ∂ν)Aν(x). Note action vanishes if Ãµ(k) = kµα(k). Gauge in-

variance. ATµ = PµνA
ν , Pµν = gµν − ∂µ∂ν/∂2. − 1

4FµνF
µν = 1

2A
T
µ∂

2gµνATν . Can’t invert

kinetic terms uniquely to find Green’s function. It’s useful to fix the gauge, and then check

at the end that the gauge fixing didn’t matter.

The functional integral should be over
∫

[dAµ]/(GE), where we divide by the volume

of the gauge equivalent orbits. The gauge equivalent orbits are associated with gauge

transformations α(x), e.g. Aµ → Aµ + ∂µα(x) in the Abelian case. We want to do the

functional integral over Aµ, dividing out by the ∂µα(x) shifts.

• Seeing contact terms from the functional integral. Recall that the classical EOM are

satisfied in correlation functions modulo contact terms, e.g. (−∂2
x−m2 + iε)〈Tφ(x)φ(y)〉 =

iδ4(x− y). This can be nicely seen from the path integral:

〈φ(x)〉J =
1

Z[0]

∫
[dφ]eiS/h̄+i

∫
Jφφ(x) =

1

Z[0]

∫
[dφ]e

i
h̄S[φ+δφ]+i

∫
J(φ+δφ)(φ(x) + δφ(x)),

where in the last equation we redefined the integration variable from φ → φ + δφ. If we

expand in δφ, the δφ0 term already agrees with the LHS, so the δφ1 term must give zero.

You can check that, upon e.g. taking −i δ
δJ(y) , this gives the classical EOM with an extra

contact term. Such equations are called the Schwinger-Dyson differential equations.

with φ(x) → 1
i

δ
δJ(x) . Either way gives the same answers for the green’s functions, of

course, – it’s just semantics for what we want to call the source.

• Now let’s consider an interacting theory. Notice that∫
[dφ] exp(

i

h̄
[Sfree + Sint[φ] + h̄

∫
d4xJφ]) = exp[

i

h̄
Sint[−i

δ

δJ
])Zfree[J ].

So

Z[J ] = N exp[
i

h̄
Sint[−i

δ

δJ
])Zfree[J ], (3)

where N is an irrelevant normalization factor (independent of J). The green’s functions

are then given by

G(n)(x1 . . . xn) =

∫
[dφ]φ(x1) . . . φ(xn) exp( ih̄SI [φ]) exp[ ih̄Sfree]∫

[dφ] exp( ih̄SI [φ]) exp[ ih̄Sfree]
,

=
1

Z[J ]

n∏
j=1

(
−ih̄ δ

δJ(xj)

)
· Z[J ]

∣∣
J=0

.
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(The denominator (in both lines) cancels off the vacuum bubble diagrams, which don’t

depend specifically on the Green’s function.)

• Illustrate the above formulae, and relation to Feynman diagrams, e.g. G(1), G(2)

and G(4) in λφ4 theory. The functional integral accounts for all the Feynman diagrammer;

even symmetry factors etc. come out simply from the derivatives w.r.t. the sources, and

the expanding the exponentials,

G(n)(x1, . . . xn) =
1

Z[J ]

n∏
j=1

(−i δ

δJ(xj)
)
∞∑
N=1

1

N !

(
−i λ

4!h̄

∫
d4y(−i)4 δ4

δJ(y)4

)N
Z0[J ]

∣∣
J=0

.

etc. Consider, for example, the 4-point functionG(4)(x1, x2, x3, x4) ≡ 〈Tφ(x1) . . . φ(x4)〉/〈0|0〉
in λ4

4! φ
4. So take 4-fuctional derivatives w.r.t. the source, at points x1 . . . x4, i.e.

δ/δJ(x1) . . . δ/δJ(x4). The O(λ0) term thus comes from expanding the exponent in (2) to

quadratic order (4 J’s), corresponding to the disconnected diagrams with two propagators.

Each propagator ends on a point xi. This is like the 4-point function in the SHO home-

work. Now consider the O(λ) contribution, coming from expanding out the interaction

part of the exponent in (3) to O(λ). There are now 4 extra δ/δJ(y), for a total of 8, so

the contributing term comes from expanding the exponent in (2) to 4-th order, i.e. there

are 4 propagators. This gives the connected term, along with several disconnected terms.
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