Group Theory, Spring 2010

Professor: Ken Intriligator, Mayer Hall 5234


Text: Lie Algebras in Particle Physics (2nd Ed.) , by Howard Georgi. Other recommended texts: Group Theory and its Applications to Physical Problems by Morton Hamermesh; Group Theory and Quantum Mechanics by Tinkham.

Course Times : MW 3:00-4:20, MH5301

Homework: Most of the course grade will be determined by the HW. The final will probably be a take-home problem set (but may be in class, TBD).

My course webpage from 2004

lecture# topic (and link to notes) Homework
1 Intro, finite groups   HW 1 (due at lec 3)        
2 Finite groups, conjugacy classes          
3 Representations          
4 Schur, orthogonality, characters   HW 2 (due April 19)        
5 characters etc. cont.          
6 some applications          
7 more applications   HW3 (due April 28)        
8 Finish point groups, start Lie groups.          
9 Lie groups cont.          
10 Lie groups irreps, SU(2)          
11 more SU(2): reps, spherical harmonics, tensor products          
12 tensor methods for SU(2)   HW4 (due 5/17)        
13 WignerEckart, isospin          
14 SU(3) flavor, roots and weights.          
15 Simple roots, Cartan matrix          
16 more on Dynkin diagrams, Cartan matrices   HW 5, due 5/26        
17 more Dynkin diagrams; fundamental weights, more SU(3), tensor methods          
18 Tensor methods, SU(3) and SU(N). SU(6) spin flavor          
19 flavor, color, spin-flavor, SU(n), SO(n), etc.   HW 6, Due 6/8