
1/9/13 Lecture outline

⋆ Garg chapter 3.

• Electrostatics: set all ∂t → 0 in Maxwell’s equations. ρ = ρ(~r) (no t) and ~J = 0.

Gives ~E = ~E(~r) and ~B = 0. Force on a charge q is ~F = q ~E, where ~E comes from all the

other charges.

• ∇ · ~E = 4πρ, ∇ × ~E = 0, ~E = −∇φ. Integrating,
∫

V

dV ∇ · ~E = −

∫

V

dV ∇2φ =

∫

∂V

~E · d~a = 4πQencl.

• Point charge Q at the origin, ~E(~r) = Qr̂/r2 = Q~r/r3. This satisfies ∇ · ~E = 4πρ =

4πQδ(x)δ(y)δ(z) = r−2Qδ(r).

Get general case by superposition, translation symmetry:

~E(~x) =
∑

n

qn
~x− ~xn
|~x− ~xn|3

=

∫
d3~x′ρ(~x′)

~x− ~x′

|~x− ~x′|3
,

with ρ(~x′) =
∑

n qnδ(~x
′ − ~xn). You can verify that this ~E has vanishing curl. Therefore,

it can be written as the gradient of a scalar function. Indeed,

~E = −∇φ, φ =
∑

n

qn
|~x− ~xn|

=

∫
d3~x′

ρ(~x′)

|~x− ~x′|
.

Nice: it’s easier to work with a scalar than a vector. We can also consider surface charges

ρ = σδ(z) where z is the normal coordinate to the surface, or line charges ρ = λδ(x)δ(y),

e.g. φ(~x) =
∫
da′σ(~x′)/|~x − ~x′| or φ(~x) =

∫
dℓ′λ(~x′)/|~x − ~x′|. Surface charges lead to

discontinuity in ~E, ( ~E2 − ~E1) · n̂ = 4πσ.

• In cases with enough symmetry, we can bypass the above, in favor of using Gauss’

law,
∮
∂V

~E · d~a = 4πQencl to directly compute ~E. Examples: uniform spherical charge

distribution (inside and out), uniform charged thick plate, uniform charged cylinder. Can

get simple, variants by superposition. E.g. cylinder with some regions cut out.

• Work done in moving charge q from ~r1 to ~r2 is

W = −

∫ 2

1

~F · d~r = q(φ(~r2)− φ(~r1)).

Assemble a collection of charges by brining them in from infinity. The potential energy is

then found to be

U = 1

2

∑

n6=m

qnqm
|~xn − ~xm|

= 1

2

∑

n

qnφ(~xn) =
1

2

∫
d3~xρ(x)φ(~x),
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where the 1

2
is to compensate for double counting pairs.

• Gauss’ law. Consider a charge Q at the origin, so ~E = Qr̂/r2. Note that
∫
∂V

~E · ~d~a =

4πQ =
∫
V
d3~r∇ · ~E. So −∇2φ here integrates to 4π. Indeed, ∇2(1/r) = −4πδ(~r). More

generally, we can see that the above is compatible with ∇ · ~E = −∇2φ = 4πρ because

∇2 1

|~r − ~r′|
= −4πδ(~r − ~r′).

• The above is an example of solving a differential equation, with source term, via

a Green’s function. We want to solve Poisson’s equation, ∇2φ = −4πρ for φ, subject to

some boundary conditions. The general solution is a sum of a homogeneous and particular

solution. A way to phrase this

φ(~x) =

∫
d3~x′G(~x, ~x′)ρ(~x′), where ∇2G(~x, ~x′) = −4πδ(~x− ~x′),

where G(~x, ~x′) is the Green’s function with appropriate boundary conditions. We’ll have

fun later, when we study conductors, with various setups and possible boundary conditions.

Let’s just for now make some general remarks.

Suppose that we are given ρ and are asked to solve the differential equation ∇2φ =

−4πρ for φ. There are some theorems about the uniqueness of the solutions. Consider

Green’s identities:
∫

V

d3x(φ∇2ψ + ∇φ · ∇ψ) =

∮

∂V

da φ
∂ψ

∂n∫

V

d3x(φ∇2ψ − ψ∇2φ) =

∮

∂V

(φ
∂ψ

∂n
− ψ

∂φ

∂n
)da.

Apply the first to φ = ψ = φ1 − φ2 ≡ X , the difference between two solutions of Poisson’s

equation, implies that
∫
V

∇X2 =
∫
∂V

X ∂X
∂n
da. Impose D (Dirichlet) or N (Neumann)

BCs on the surface, implies X = 0 or ∂nX = 0, respectively. Then get ∇X = 0 in the

interior, which, using the BCs, implies that X = 0. Generally, specifying D or N fully

specifies the solution. Specifying both is generally inconsistent (or quantizes the modes of

the solutions). In other words, G(~x, ~x′) = |~x− ~x′|−1 + F (~x, ~x′), where F is fully specified

by the D or N BCs.

For now, we’re working in the vacuum. So the BC is that the fields die off sufficiently

fast at infinity, so that X∂rX → 0 faster than 1/r2.

• Using the above,

U = −
1

8π

∫

V

d3xφ∇2φ =
1

8π

∫
d3x~E2 +

1

8π

∮

∂V

φ~E · da.
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Taking the size of V → ∞, the fields fall off fast enough so the second term vanishes.

• Multipole expansion. Charges at locations ~r′ and observer at location ~r. Suppose

the charges are localized and the observer is far away, r ≫ r′. Then Taylor expand:

1

|~r − ~r′|
=

1

r
− (~r′ · ∇)

1

r
+

1

2!
(~r′ · ∇)2

1

r
+ . . . .

So then get for large r (far from charged object)

φ(~r) =

∫

V

d3~r′
ρ(~r′)

|~r − ~r′|
≈
Q

r
+
d · ~r

~r3
+ 1

2
Qij(3xixi − δijr

2)r−5 + . . . ,

where Q =
∫
d3x′ρ(~x′) is the total charge and the dipole and quadrapole moments are

~d =

∫
d3~x′ρ(~x′)~x′, Qij =

∫
d3x′ρ(~x′)(x′ix

′
j −

1

3
r′2δij),

and we used ∂i∂j1/r = (3xixj − δijr
2)/r5. The dipole part of the electric field is

~E~d
= −∇

d · ~r

r3
=

3r̂ · ~dr̂ − ~d

r3
.

Draw picture.

• More generally, can use

1

|~r − ~r′|
=

∞∑

ℓ=0

ℓ∑

m=−ℓ

4π

2ℓ+ 1

rℓ<

rℓ+1
>

Y ∗
ℓm(r̂′)Yℓm(r̂)

1

|~r − ~r′|
=

∞∑

ℓ=0

rℓ<

rℓ+1
>

Pℓ(r̂ · r̂
′).

• Expand the potential energy for a system of charges (say at the origin) in some

external electric field: U ≈ Qφ(0) − ~d · ~E(0) + . . . . This means that the dipole feels a

torque from the external field, which fits with ~τ =
∑

n ~rn × qn ~E = ~d× ~E.

A dipole dipole interaction is Udd = (~d1 · ~d2 − 3~d1 · r̂ ~d2 · r̂)/r
3. Minimized for dipoles

that are parallel to each other, and their separation – lined up head-to head.
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